Lipid changes in extrapulmonary organs and serum of rats after chronic exposure to ambient fine particulate matter

Fine particulate matter (PM2.5) is able to pass through the respiratory barrier to enter the circulatory system and can consequently spread to the whole body to cause toxicity. Although our previous studies have revealed significantly altered levels of phosphorylcholine-containing lipids in the lung...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 784; p. 147018
Main Authors Lin, Ching-Yu, Chen, Wen-Ling, Chen, Ting-Zhen, Lee, Sheng-Han, Liang, Hao-Jan, Chou, Charles C.-K., Tang, Chuan-Ho, Cheng, Tsun-Jen
Format Journal Article
LanguageEnglish
Published Elsevier B.V 25.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Fine particulate matter (PM2.5) is able to pass through the respiratory barrier to enter the circulatory system and can consequently spread to the whole body to cause toxicity. Although our previous studies have revealed significantly altered levels of phosphorylcholine-containing lipids in the lungs of rats after chronic inhalation exposure to PM2.5, the effects of PM2.5 on phosphorylcholine-containing lipids in the extrapulmonary organs have not yet been elucidated. In this study, we examined the lipid effects of chronic PM2.5 exposure on various organs and serum by using a rat inhalation model followed by a mass spectrometry-based lipidomic approach. Male Sprague-Dawley rats were continuously exposed at the whole body level to nonfiltered and nonconcentrated ambient air from the outside environment of Taipei city for 8 months, while the control rats inhaled filtered air simultaneously. After exposure, serum samples and various organs, including the testis, pancreas, heart, liver, kidney, spleen, and epididymis, were collected for lipid extraction and analysis to examine the changes in phosphorylcholine-containing lipids after exposure. The results from the partial least squares discriminant analysis models demonstrated that the lipid profiles in the PM2.5 exposure group were different from those in the control group in the rat testis, pancreas, heart, liver, kidney and serum. The greatest PM2.5-induced lipid effects were observed in the testes. Decreased lyso-phosphatidylcholines (PCs) as well as increased unsaturated diacyl-PCs and sphingomyelins in the testes may be related to maintaining the membrane integrity of spermatozoa, antioxidation, and cell signaling. Additionally, our results showed that decreased PC(16:0/18:1) was observed in both the serum and testes. In conclusion, exposure to chronic environmental concentrations of PM2.5 caused lipid perturbation, especially in the testes of rats. This study highlighted the susceptibility of the testes and suggested possible molecular events for future study. [Display omitted] •Chronic exposure to low levels of PM2.5 induced lipid changes in extrapulmonary organs in rats.•The greatest PM2.5-induced lipid effects were observed in the testes.•Lipid changes in the testes were related to disturbances in cellular structure and function.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2021.147018