TUSR-Net: Triple Unfolding Single Image Dehazing with Self-Regularization and Dual Feature to Pixel Attention
Single image dehazing is a challenging and illposed problem due to severe information degeneration of images captured in hazy conditions. Remarkable progresses have been achieved by deep-learning based image dehazing methods, where residual learning is commonly used to separate the hazy image into c...
Saved in:
Published in | IEEE transactions on image processing Vol. PP; p. 1 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Single image dehazing is a challenging and illposed problem due to severe information degeneration of images captured in hazy conditions. Remarkable progresses have been achieved by deep-learning based image dehazing methods, where residual learning is commonly used to separate the hazy image into clear and haze components. However, the nature of low similarity between haze and clear components is commonly neglected, while the lack of constraint of contrastive peculiarity between the two components always restricts the performance of these approaches. To deal with these problems, we propose an end-to-end self-regularized network (TUSR-Net) which exploits the contrastive peculiarity of different components of the hazy image, i.e , self-regularization (SR). In specific, the hazy image is separated into clear and hazy components and constraint between different image components, i.e ., self-regularization, is leveraged to pull the recovered clear image closer to groundtruth, which largely promotes the performance of image dehazing. Meanwhile, an effective triple unfolding framework combined with dual feature to pixel attention is proposed to intensify and fuse the intermediate information in feature, channel and pixel levels, respectively, thus features with better representational ability can be obtained. Our TUSR-Net achieves better trade-off between performance and parameter size with weight-sharing strategy and is much more flexible. Experiments on various benchmarking datasets demonstrate the superiority of our TUSR-Net over state-of-the-art single image dehazing methods. |
---|---|
AbstractList | Single image dehazing is a challenging and ill-posed problem due to severe information degeneration of images captured in hazy conditions. Remarkable progresses have been achieved by deep-learning based image dehazing methods, where residual learning is commonly used to separate the hazy image into clear and haze components. However, the nature of low similarity between haze and clear components is commonly neglected, while the lack of constraint of contrastive peculiarity between the two components always restricts the performance of these approaches. To deal with these problems, we propose an end-to-end self-regularized network (TUSR-Net) which exploits the contrastive peculiarity of different components of the hazy image, i.e, self-regularization (SR). In specific, the hazy image is separated into clear and hazy components and constraint between different image components, i.e., self-regularization, is leveraged to pull the recovered clear image closer to groundtruth, which largely promotes the performance of image dehazing. Meanwhile, an effective triple unfolding framework combined with dual feature to pixel attention is proposed to intensify and fuse the intermediate information in feature, channel and pixel levels, respectively, thus features with better representational ability can be obtained. Our TUSR-Net achieves better trade-off between performance and parameter size with weight-sharing strategy and is much more flexible. Experiments on various benchmarking datasets demonstrate the superiority of our TUSR-Net over state-of-the-art single image dehazing methods. Single image dehazing is a challenging and illposed problem due to severe information degeneration of images captured in hazy conditions. Remarkable progresses have been achieved by deep-learning based image dehazing methods, where residual learning is commonly used to separate the hazy image into clear and haze components. However, the nature of low similarity between haze and clear components is commonly neglected, while the lack of constraint of contrastive peculiarity between the two components always restricts the performance of these approaches. To deal with these problems, we propose an end-to-end self-regularized network (TUSR-Net) which exploits the contrastive peculiarity of different components of the hazy image, i.e, self-regularization (SR). In specific, the hazy image is separated into clear and hazy components and constraint between different image components, i.e., self-regularization, is leveraged to pull the recovered clear image closer to groundtruth, which largely promotes the performance of image dehazing. Meanwhile, an effective triple unfolding framework combined with dual feature to pixel attention is proposed to intensify and fuse the intermediate information in feature, channel and pixel levels, respectively, thus features with better representational ability can be obtained. Our TUSR-Net achieves better trade-off between performance and parameter size with weight-sharing strategy and is much more flexible. Experiments on various benchmarking datasets demonstrate the superiority of our TUSR-Net over state-of-the-art single image dehazing methods. |
Author | Dai, Yuchao Zhang, Liangjun Song, Xibin Li, Wei Shen, Zhelun Li, Hongdong Zhou, Dingfu |
Author_xml | – sequence: 1 givenname: Xibin orcidid: 0000-0001-7019-6238 surname: Song fullname: Song, Xibin organization: Robotics and Autonomous Driving Lab, Baidu Research, China – sequence: 2 givenname: Dingfu orcidid: 0000-0003-3412-3984 surname: Zhou fullname: Zhou, Dingfu organization: Robotics and Autonomous Driving Lab, Baidu Research, China – sequence: 3 givenname: Wei surname: Li fullname: Li, Wei organization: China Electronics Standardization Institute, Beijing, China – sequence: 4 givenname: Yuchao orcidid: 0000-0002-4432-7406 surname: Dai fullname: Dai, Yuchao organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China – sequence: 5 givenname: Zhelun surname: Shen fullname: Shen, Zhelun organization: Robotics and Autonomous Driving Lab, Baidu Research, China – sequence: 6 givenname: Liangjun surname: Zhang fullname: Zhang, Liangjun organization: Robotics and Autonomous Driving Lab, Baidu Research, China – sequence: 7 givenname: Hongdong orcidid: 0000-0003-4125-1554 surname: Li fullname: Li, Hongdong organization: College of Engineering and Computer Science, Australian National University, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37022903$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkU1v1DAQhi1URD_gzgEhS1x6yTJjO_GGW9UPWKmCqrt7jrzJZOvKcbaOI6C_HoddEOIyM5p55tVo3lN25HtPjL1FmCFC-XG1uJsJEHImhVQa8AU7wVJhBqDEUaoh15lGVR6z02F4BECVY_GKHUsNQpQgT1i3Wi_vs68UP_FVsDtHfO3b3jXWb_kyhdRYdGZL_IoezPPU_W7jA1-Sa7N72o7OBPtsou09N77hV6Nx_IZMHAPx2PM7-4Mcv4iR_MS8Zi9b4wZ6c8hnbH1zvbr8kt1--7y4vLjNaqnmMUNsCiiklAjztsa82eSiFlBCWxpdEEhhVJOrYlNsJGpTatGkeVOTNCiELuUZO9_r7kL_NNIQq84ONTlnPPXjUCVmesv8N_rhP_SxH4NP1yVK63yOMi8SBXuqDv0wBGqrXbCdCT8rhGqyokpWVJMV1cGKtPL-IDxuOmr-Lvz5fQLe7QFLRP_ogZKF0PIX-KeMvQ |
CODEN | IIPRE4 |
CitedBy_id | crossref_primary_10_1364_OE_498444 crossref_primary_10_1016_j_asoc_2024_111873 crossref_primary_10_1016_j_neunet_2024_106165 crossref_primary_10_1007_s00371_024_03511_2 crossref_primary_10_1016_j_imavis_2023_104820 crossref_primary_10_3390_app14135391 crossref_primary_10_3390_electronics13112082 |
Cites_doi | 10.1609/aaai.v34i07.6865 10.1109/CVPRW.2018.00119 10.1049/el:20080522 10.1109/CVPRW50498.2020.00230 10.1109/TCSVT.2017.2728822 10.1109/CVPR.2016.185 10.1109/cvpr46437.2021.01592 10.1109/TMM.2019.2933334 10.1007/s11042-017-5081-3 10.1109/CVPRW50498.2020.00223 10.1109/TIP.2015.2446191 10.1109/CVPR46437.2021.00710 10.1109/wacv.2019.00151 10.1109/TIP.2020.3040075 10.1109/TIP.2018.2867951 10.1109/CVPR52688.2022.00572 10.1109/TIP.2019.2891124 10.1109/CVPR.2019.00835 10.1109/TIP.2021.3060873 10.1016/j.ins.2019.02.058 10.1023/A:1016328200723 10.1109/CVPR.2019.00142 10.1109/TIP.2021.3112010 10.1109/ICPR.2010.579 10.1109/CVPR.2008.4587643 10.1109/CVPRW.2019.00265 10.5244/C.28.114 10.1016/j.image.2019.02.004 10.1007/s11263-019-01235-8 10.1109/TMM.2018.2871955 10.1109/iccv.2019.00337 10.1109/ICCV.2019.00741 10.1109/ICCV.2017.511 10.1109/CVPR46437.2021.00100 10.1109/TPAMI.2010.168 10.1109/cvpr.2018.00343 10.1109/TIP.2021.3068649 10.1109/TIP.2020.2975909 10.1109/CVPR.2018.00337 10.1109/TMM.2017.2652069 10.1109/CVPR.2019.00065 10.1109/TCSVT.2020.3021128 10.1109/tcsvt.2022.3207020 10.1109/CVPRW.2018.00127 10.1145/2651362 10.1109/cvpr46437.2021.01041 10.1109/CVPR.2018.00856 10.1109/ICIP.2019.8803046 10.1109/TIP.2020.3045630 10.1109/CVPR42600.2020.01079 10.1109/CVPR42600.2020.00288 10.1016/j.cviu.2020.103003 10.1109/CVPR42600.2020.00352 10.1109/TIP.2018.2855433 10.1109/TIP.2016.2598681 10.1109/cvpr42600.2020.00223 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE NPM AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TIP.2023.3234701 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library Online PubMed CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Technology Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1941-0042 |
EndPage | 1 |
ExternalDocumentID | 10_1109_TIP_2023_3234701 37022903 10043627 |
Genre | orig-research Journal Article |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AASAJ ABQJQ ACGFO ACGFS ACIWK AENEX AKJIK ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RIG RNS TAE TN5 NPM 53G 5VS AAYOK AAYXX ABFSI AETIX AI. AIBXA ALLEH CITATION E.L EJD H~9 ICLAB IFJZH VH1 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c348t-11d606333108fc15db52c2090f9a76e032a4d546b6b317a972d2c2dce3a122793 |
IEDL.DBID | RIE |
ISSN | 1057-7149 |
IngestDate | Fri Aug 16 05:14:35 EDT 2024 Thu Oct 10 19:30:10 EDT 2024 Fri Aug 23 03:05:36 EDT 2024 Sat Sep 28 08:20:59 EDT 2024 Mon Nov 04 12:05:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-11d606333108fc15db52c2090f9a76e032a4d546b6b317a972d2c2dce3a122793 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7019-6238 0000-0002-4432-7406 0000-0003-3412-3984 0000-0003-4125-1554 |
PMID | 37022903 |
PQID | 2777581356 |
PQPubID | 85429 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_2797149879 crossref_primary_10_1109_TIP_2023_3234701 ieee_primary_10043627 pubmed_primary_37022903 proquest_journals_2777581356 |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on image processing |
PublicationTitleAbbrev | TIP |
PublicationTitleAlternate | IEEE Trans Image Process |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 Simonyan (ref41) 2014 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref44 ref43 ref49 Kingma (ref21) 2014 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref28 ref27 ref29 McCartney (ref32) 1976 |
References_xml | – ident: ref34 doi: 10.1609/aaai.v34i07.6865 – ident: ref3 doi: 10.1109/CVPRW.2018.00119 – ident: ref19 doi: 10.1049/el:20080522 – ident: ref2 doi: 10.1109/CVPRW50498.2020.00230 – ident: ref46 doi: 10.1109/TCSVT.2017.2728822 – ident: ref4 doi: 10.1109/CVPR.2016.185 – year: 2014 ident: ref21 article-title: Adam: A method for stochastic optimization publication-title: arXiv:1412.6980 contributor: fullname: Kingma – ident: ref57 doi: 10.1109/cvpr46437.2021.01592 – ident: ref24 doi: 10.1109/TMM.2019.2933334 – ident: ref42 doi: 10.1007/s11042-017-5081-3 – ident: ref28 doi: 10.1109/CVPRW50498.2020.00223 – ident: ref59 doi: 10.1109/TIP.2015.2446191 – ident: ref7 doi: 10.1109/CVPR46437.2021.00710 – ident: ref6 doi: 10.1109/wacv.2019.00151 – ident: ref25 doi: 10.1109/TIP.2020.3040075 – ident: ref23 doi: 10.1109/TIP.2018.2867951 – ident: ref11 doi: 10.1109/CVPR52688.2022.00572 – ident: ref20 doi: 10.1109/TIP.2019.2891124 – ident: ref35 doi: 10.1109/CVPR.2019.00835 – ident: ref56 doi: 10.1109/TIP.2021.3060873 – ident: ref51 doi: 10.1016/j.ins.2019.02.058 – ident: ref33 doi: 10.1023/A:1016328200723 – ident: ref48 doi: 10.1109/CVPR.2019.00142 – ident: ref14 doi: 10.1109/TIP.2021.3112010 – ident: ref18 doi: 10.1109/ICPR.2010.579 – ident: ref45 doi: 10.1109/CVPR.2008.4587643 – ident: ref13 doi: 10.1109/CVPRW.2019.00265 – ident: ref58 doi: 10.5244/C.28.114 – ident: ref55 doi: 10.1016/j.image.2019.02.004 – ident: ref38 doi: 10.1007/s11263-019-01235-8 – ident: ref40 doi: 10.1109/TMM.2018.2871955 – ident: ref27 doi: 10.1109/iccv.2019.00337 – ident: ref29 doi: 10.1109/ICCV.2019.00741 – ident: ref22 doi: 10.1109/ICCV.2017.511 – volume-title: Optics of the Atmosphere: Scattering by Molecules and Particles year: 1976 ident: ref32 contributor: fullname: McCartney – ident: ref47 doi: 10.1109/CVPR46437.2021.00100 – ident: ref15 doi: 10.1109/TPAMI.2010.168 – ident: ref37 doi: 10.1109/cvpr.2018.00343 – ident: ref31 doi: 10.1109/TIP.2021.3068649 – ident: ref36 doi: 10.1109/TIP.2020.2975909 – ident: ref53 doi: 10.1109/CVPR.2018.00337 – ident: ref49 doi: 10.1109/TMM.2017.2652069 – ident: ref16 doi: 10.1109/CVPR.2019.00065 – ident: ref52 doi: 10.1109/TCSVT.2020.3021128 – ident: ref43 doi: 10.1109/tcsvt.2022.3207020 – ident: ref9 doi: 10.1109/CVPRW.2018.00127 – ident: ref10 doi: 10.1145/2651362 – ident: ref50 doi: 10.1109/cvpr46437.2021.01041 – ident: ref26 doi: 10.1109/CVPR.2018.00856 – ident: ref1 doi: 10.1109/ICIP.2019.8803046 – year: 2014 ident: ref41 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv:1409.1556 contributor: fullname: Simonyan – ident: ref12 doi: 10.1109/TIP.2020.3045630 – ident: ref44 doi: 10.1109/CVPR42600.2020.01079 – ident: ref39 doi: 10.1109/CVPR42600.2020.00288 – ident: ref54 doi: 10.1016/j.cviu.2020.103003 – ident: ref17 doi: 10.1109/CVPR42600.2020.00352 – ident: ref30 doi: 10.1109/TIP.2018.2855433 – ident: ref5 doi: 10.1109/TIP.2016.2598681 – ident: ref8 doi: 10.1109/cvpr42600.2020.00223 |
SSID | ssj0014516 |
Score | 2.5268168 |
Snippet | Single image dehazing is a challenging and illposed problem due to severe information degeneration of images captured in hazy conditions. Remarkable progresses... Single image dehazing is a challenging and ill-posed problem due to severe information degeneration of images captured in hazy conditions. Remarkable... |
SourceID | proquest crossref pubmed ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1 |
SubjectTerms | Atmospheric modeling Attention Attenuation Deep learning Degeneration Dehazing Fuses Ill posed problems Image color analysis Image reconstruction Image restoration Pixels Regularization Scattering Self-Regularization |
Title | TUSR-Net: Triple Unfolding Single Image Dehazing with Self-Regularization and Dual Feature to Pixel Attention |
URI | https://ieeexplore.ieee.org/document/10043627 https://www.ncbi.nlm.nih.gov/pubmed/37022903 https://www.proquest.com/docview/2777581356 https://search.proquest.com/docview/2797149879 |
Volume | PP |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB3RnuBASymQUpCRuHBwmthOHPdWtVQtEququyv1FvkrgKDZaptIiF-Px0lWFVIlLlEUW8nEM06eZzxvAD4iTVnRCEm1kJIKqytqXGFow6zSyCZSeIzofp2VF0vx5aa4GZPVYy6M9z5uPvMpnsZYvlvZHl1lR3kkTGdyC7akUkOy1iZkgBVnY2izkFQG3D_FJDN1tLi8SrFMeMoZF3Ks_zL9g2JRlcfxZfzPnO_AbJJw2F7yM-07k9o__5A3_vcr7MLzEXGSk8FEXsAT3-7Bzog-yTi37_fg2QNqwpdwu1jOr-nMd8dksUZnPFkGU4yRKjIPh3Dh8jZ8i8iZ_44M1d8IenTJ3P9q6HWsb78eMzyJbh0564MICDf7tSfdilz9-O2DTF037Lbch-X558XpBR1LM1DLRdXRPHdh5cN5AIdVY_PCmYJZlqmsUVqWPuNMC1eI0pQmABStJHOh3VnPdY6chfwVbLer1r8BwiqfM1MqpjMjMuNUZWzmFDM5N1VZ2QQ-Tcqq7wYGjjquXDJVB8XWqNh6VGwC-zjkD_oNo53A4aTeepyj9zWTMiyWcl6UCXzYNIfZhSET3fpVj30U2lIlVQKvB7PY3JzLDMny-cEjD30LT1G2wV9zCNvduvfvAoLpzPtouX8Bd1DqJQ |
link.rule.ids | 315,783,787,799,27936,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1BOQAHCqVAoICRuHBwmthJHHNDlGoX2lXVzUq9Rf4KIGgWbRMJ8evxOMmqQqrEJYpiK5l4xsnzjOcNwFukKcubTFCVCUEzo0qqba5pw4xUyCaSO4zoni6K2Sr7fJFfjMnqIRfGORc2n7kYT0Ms365Nj66ywzQQpjNxG-54YF0WQ7rWNmiANWdDcDMXVHjkP0UlE3lYzc9iLBQec8YzMVaAmf5CoazKzQgz_GmOd2ExyThsMPkR952OzZ9_6Bv_-yUewoMRc5IPg5E8gluu3YPdEX-ScXZf7cH9a-SEj-GyWi3P6cJ170m1QXc8WXljDLEqsvQHf2F-6b9G5Mh9Q47qrwR9umTpfjb0PFS434w5nkS1lhz1XgQEnP3GkW5Nzr7_dl6mrhv2W-7D6vhT9XFGx-IM1PCs7GiaWr_24dzDw7IxaW51zgxLZNJIJQqXcKYym2eFLrSHKEoKZn27NY6rFFkL-RPYadetewaElS5lupBMJTpLtJWlNomVTKdcl0VpIng3Kav-NXBw1GHtksjaK7ZGxdajYiPYxyG_1m8Y7QgOJvXW4yy9qpkQfrmU8ryI4M222c8vDJqo1q177CPRlkohI3g6mMX25lwkSJfPn9_w0Ndwd1adntQn88WXF3AP5Ry8Nwew021699LjmU6_Clb8F9vj7XA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TUSR-Net%3A+Triple+Unfolding+Single+Image+Dehazing+with+Self-Regularization+and+Dual+Feature+to+Pixel+Attention&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Song%2C+Xibin&rft.au=Zhou%2C+Dingfu&rft.au=Li%2C+Wei&rft.au=Dai%2C+Yuchao&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=1057-7149&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTIP.2023.3234701&rft.externalDocID=10043627 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |