TUSR-Net: Triple Unfolding Single Image Dehazing with Self-Regularization and Dual Feature to Pixel Attention

Single image dehazing is a challenging and illposed problem due to severe information degeneration of images captured in hazy conditions. Remarkable progresses have been achieved by deep-learning based image dehazing methods, where residual learning is commonly used to separate the hazy image into c...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. PP; p. 1
Main Authors Song, Xibin, Zhou, Dingfu, Li, Wei, Dai, Yuchao, Shen, Zhelun, Zhang, Liangjun, Li, Hongdong
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Single image dehazing is a challenging and illposed problem due to severe information degeneration of images captured in hazy conditions. Remarkable progresses have been achieved by deep-learning based image dehazing methods, where residual learning is commonly used to separate the hazy image into clear and haze components. However, the nature of low similarity between haze and clear components is commonly neglected, while the lack of constraint of contrastive peculiarity between the two components always restricts the performance of these approaches. To deal with these problems, we propose an end-to-end self-regularized network (TUSR-Net) which exploits the contrastive peculiarity of different components of the hazy image, i.e , self-regularization (SR). In specific, the hazy image is separated into clear and hazy components and constraint between different image components, i.e ., self-regularization, is leveraged to pull the recovered clear image closer to groundtruth, which largely promotes the performance of image dehazing. Meanwhile, an effective triple unfolding framework combined with dual feature to pixel attention is proposed to intensify and fuse the intermediate information in feature, channel and pixel levels, respectively, thus features with better representational ability can be obtained. Our TUSR-Net achieves better trade-off between performance and parameter size with weight-sharing strategy and is much more flexible. Experiments on various benchmarking datasets demonstrate the superiority of our TUSR-Net over state-of-the-art single image dehazing methods.
AbstractList Single image dehazing is a challenging and ill-posed problem due to severe information degeneration of images captured in hazy conditions. Remarkable progresses have been achieved by deep-learning based image dehazing methods, where residual learning is commonly used to separate the hazy image into clear and haze components. However, the nature of low similarity between haze and clear components is commonly neglected, while the lack of constraint of contrastive peculiarity between the two components always restricts the performance of these approaches. To deal with these problems, we propose an end-to-end self-regularized network (TUSR-Net) which exploits the contrastive peculiarity of different components of the hazy image, i.e, self-regularization (SR). In specific, the hazy image is separated into clear and hazy components and constraint between different image components, i.e., self-regularization, is leveraged to pull the recovered clear image closer to groundtruth, which largely promotes the performance of image dehazing. Meanwhile, an effective triple unfolding framework combined with dual feature to pixel attention is proposed to intensify and fuse the intermediate information in feature, channel and pixel levels, respectively, thus features with better representational ability can be obtained. Our TUSR-Net achieves better trade-off between performance and parameter size with weight-sharing strategy and is much more flexible. Experiments on various benchmarking datasets demonstrate the superiority of our TUSR-Net over state-of-the-art single image dehazing methods.
Single image dehazing is a challenging and illposed problem due to severe information degeneration of images captured in hazy conditions. Remarkable progresses have been achieved by deep-learning based image dehazing methods, where residual learning is commonly used to separate the hazy image into clear and haze components. However, the nature of low similarity between haze and clear components is commonly neglected, while the lack of constraint of contrastive peculiarity between the two components always restricts the performance of these approaches. To deal with these problems, we propose an end-to-end self-regularized network (TUSR-Net) which exploits the contrastive peculiarity of different components of the hazy image, i.e, self-regularization (SR). In specific, the hazy image is separated into clear and hazy components and constraint between different image components, i.e., self-regularization, is leveraged to pull the recovered clear image closer to groundtruth, which largely promotes the performance of image dehazing. Meanwhile, an effective triple unfolding framework combined with dual feature to pixel attention is proposed to intensify and fuse the intermediate information in feature, channel and pixel levels, respectively, thus features with better representational ability can be obtained. Our TUSR-Net achieves better trade-off between performance and parameter size with weight-sharing strategy and is much more flexible. Experiments on various benchmarking datasets demonstrate the superiority of our TUSR-Net over state-of-the-art single image dehazing methods.
Author Dai, Yuchao
Zhang, Liangjun
Song, Xibin
Li, Wei
Shen, Zhelun
Li, Hongdong
Zhou, Dingfu
Author_xml – sequence: 1
  givenname: Xibin
  orcidid: 0000-0001-7019-6238
  surname: Song
  fullname: Song, Xibin
  organization: Robotics and Autonomous Driving Lab, Baidu Research, China
– sequence: 2
  givenname: Dingfu
  orcidid: 0000-0003-3412-3984
  surname: Zhou
  fullname: Zhou, Dingfu
  organization: Robotics and Autonomous Driving Lab, Baidu Research, China
– sequence: 3
  givenname: Wei
  surname: Li
  fullname: Li, Wei
  organization: China Electronics Standardization Institute, Beijing, China
– sequence: 4
  givenname: Yuchao
  orcidid: 0000-0002-4432-7406
  surname: Dai
  fullname: Dai, Yuchao
  organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China
– sequence: 5
  givenname: Zhelun
  surname: Shen
  fullname: Shen, Zhelun
  organization: Robotics and Autonomous Driving Lab, Baidu Research, China
– sequence: 6
  givenname: Liangjun
  surname: Zhang
  fullname: Zhang, Liangjun
  organization: Robotics and Autonomous Driving Lab, Baidu Research, China
– sequence: 7
  givenname: Hongdong
  orcidid: 0000-0003-4125-1554
  surname: Li
  fullname: Li, Hongdong
  organization: College of Engineering and Computer Science, Australian National University, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37022903$$D View this record in MEDLINE/PubMed
BookMark eNpdkU1v1DAQhi1URD_gzgEhS1x6yTJjO_GGW9UPWKmCqrt7jrzJZOvKcbaOI6C_HoddEOIyM5p55tVo3lN25HtPjL1FmCFC-XG1uJsJEHImhVQa8AU7wVJhBqDEUaoh15lGVR6z02F4BECVY_GKHUsNQpQgT1i3Wi_vs68UP_FVsDtHfO3b3jXWb_kyhdRYdGZL_IoezPPU_W7jA1-Sa7N72o7OBPtsou09N77hV6Nx_IZMHAPx2PM7-4Mcv4iR_MS8Zi9b4wZ6c8hnbH1zvbr8kt1--7y4vLjNaqnmMUNsCiiklAjztsa82eSiFlBCWxpdEEhhVJOrYlNsJGpTatGkeVOTNCiELuUZO9_r7kL_NNIQq84ONTlnPPXjUCVmesv8N_rhP_SxH4NP1yVK63yOMi8SBXuqDv0wBGqrXbCdCT8rhGqyokpWVJMV1cGKtPL-IDxuOmr-Lvz5fQLe7QFLRP_ogZKF0PIX-KeMvQ
CODEN IIPRE4
CitedBy_id crossref_primary_10_1364_OE_498444
crossref_primary_10_1016_j_asoc_2024_111873
crossref_primary_10_1016_j_neunet_2024_106165
crossref_primary_10_1007_s00371_024_03511_2
crossref_primary_10_1016_j_imavis_2023_104820
crossref_primary_10_3390_app14135391
crossref_primary_10_3390_electronics13112082
Cites_doi 10.1609/aaai.v34i07.6865
10.1109/CVPRW.2018.00119
10.1049/el:20080522
10.1109/CVPRW50498.2020.00230
10.1109/TCSVT.2017.2728822
10.1109/CVPR.2016.185
10.1109/cvpr46437.2021.01592
10.1109/TMM.2019.2933334
10.1007/s11042-017-5081-3
10.1109/CVPRW50498.2020.00223
10.1109/TIP.2015.2446191
10.1109/CVPR46437.2021.00710
10.1109/wacv.2019.00151
10.1109/TIP.2020.3040075
10.1109/TIP.2018.2867951
10.1109/CVPR52688.2022.00572
10.1109/TIP.2019.2891124
10.1109/CVPR.2019.00835
10.1109/TIP.2021.3060873
10.1016/j.ins.2019.02.058
10.1023/A:1016328200723
10.1109/CVPR.2019.00142
10.1109/TIP.2021.3112010
10.1109/ICPR.2010.579
10.1109/CVPR.2008.4587643
10.1109/CVPRW.2019.00265
10.5244/C.28.114
10.1016/j.image.2019.02.004
10.1007/s11263-019-01235-8
10.1109/TMM.2018.2871955
10.1109/iccv.2019.00337
10.1109/ICCV.2019.00741
10.1109/ICCV.2017.511
10.1109/CVPR46437.2021.00100
10.1109/TPAMI.2010.168
10.1109/cvpr.2018.00343
10.1109/TIP.2021.3068649
10.1109/TIP.2020.2975909
10.1109/CVPR.2018.00337
10.1109/TMM.2017.2652069
10.1109/CVPR.2019.00065
10.1109/TCSVT.2020.3021128
10.1109/tcsvt.2022.3207020
10.1109/CVPRW.2018.00127
10.1145/2651362
10.1109/cvpr46437.2021.01041
10.1109/CVPR.2018.00856
10.1109/ICIP.2019.8803046
10.1109/TIP.2020.3045630
10.1109/CVPR42600.2020.01079
10.1109/CVPR42600.2020.00288
10.1016/j.cviu.2020.103003
10.1109/CVPR42600.2020.00352
10.1109/TIP.2018.2855433
10.1109/TIP.2016.2598681
10.1109/cvpr42600.2020.00223
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
NPM
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2023.3234701
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library Online
PubMed
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 1
ExternalDocumentID 10_1109_TIP_2023_3234701
37022903
10043627
Genre orig-research
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AASAJ
ABQJQ
ACGFO
ACGFS
ACIWK
AENEX
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RIG
RNS
TAE
TN5
NPM
53G
5VS
AAYOK
AAYXX
ABFSI
AETIX
AI.
AIBXA
ALLEH
CITATION
E.L
EJD
H~9
ICLAB
IFJZH
VH1
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c348t-11d606333108fc15db52c2090f9a76e032a4d546b6b317a972d2c2dce3a122793
IEDL.DBID RIE
ISSN 1057-7149
IngestDate Fri Aug 16 05:14:35 EDT 2024
Thu Oct 10 19:30:10 EDT 2024
Fri Aug 23 03:05:36 EDT 2024
Sat Sep 28 08:20:59 EDT 2024
Mon Nov 04 12:05:32 EST 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-11d606333108fc15db52c2090f9a76e032a4d546b6b317a972d2c2dce3a122793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7019-6238
0000-0002-4432-7406
0000-0003-3412-3984
0000-0003-4125-1554
PMID 37022903
PQID 2777581356
PQPubID 85429
PageCount 1
ParticipantIDs proquest_miscellaneous_2797149879
crossref_primary_10_1109_TIP_2023_3234701
ieee_primary_10043627
pubmed_primary_37022903
proquest_journals_2777581356
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
Simonyan (ref41) 2014
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref44
ref43
ref49
Kingma (ref21) 2014
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref28
ref27
ref29
McCartney (ref32) 1976
References_xml – ident: ref34
  doi: 10.1609/aaai.v34i07.6865
– ident: ref3
  doi: 10.1109/CVPRW.2018.00119
– ident: ref19
  doi: 10.1049/el:20080522
– ident: ref2
  doi: 10.1109/CVPRW50498.2020.00230
– ident: ref46
  doi: 10.1109/TCSVT.2017.2728822
– ident: ref4
  doi: 10.1109/CVPR.2016.185
– year: 2014
  ident: ref21
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
  contributor:
    fullname: Kingma
– ident: ref57
  doi: 10.1109/cvpr46437.2021.01592
– ident: ref24
  doi: 10.1109/TMM.2019.2933334
– ident: ref42
  doi: 10.1007/s11042-017-5081-3
– ident: ref28
  doi: 10.1109/CVPRW50498.2020.00223
– ident: ref59
  doi: 10.1109/TIP.2015.2446191
– ident: ref7
  doi: 10.1109/CVPR46437.2021.00710
– ident: ref6
  doi: 10.1109/wacv.2019.00151
– ident: ref25
  doi: 10.1109/TIP.2020.3040075
– ident: ref23
  doi: 10.1109/TIP.2018.2867951
– ident: ref11
  doi: 10.1109/CVPR52688.2022.00572
– ident: ref20
  doi: 10.1109/TIP.2019.2891124
– ident: ref35
  doi: 10.1109/CVPR.2019.00835
– ident: ref56
  doi: 10.1109/TIP.2021.3060873
– ident: ref51
  doi: 10.1016/j.ins.2019.02.058
– ident: ref33
  doi: 10.1023/A:1016328200723
– ident: ref48
  doi: 10.1109/CVPR.2019.00142
– ident: ref14
  doi: 10.1109/TIP.2021.3112010
– ident: ref18
  doi: 10.1109/ICPR.2010.579
– ident: ref45
  doi: 10.1109/CVPR.2008.4587643
– ident: ref13
  doi: 10.1109/CVPRW.2019.00265
– ident: ref58
  doi: 10.5244/C.28.114
– ident: ref55
  doi: 10.1016/j.image.2019.02.004
– ident: ref38
  doi: 10.1007/s11263-019-01235-8
– ident: ref40
  doi: 10.1109/TMM.2018.2871955
– ident: ref27
  doi: 10.1109/iccv.2019.00337
– ident: ref29
  doi: 10.1109/ICCV.2019.00741
– ident: ref22
  doi: 10.1109/ICCV.2017.511
– volume-title: Optics of the Atmosphere: Scattering by Molecules and Particles
  year: 1976
  ident: ref32
  contributor:
    fullname: McCartney
– ident: ref47
  doi: 10.1109/CVPR46437.2021.00100
– ident: ref15
  doi: 10.1109/TPAMI.2010.168
– ident: ref37
  doi: 10.1109/cvpr.2018.00343
– ident: ref31
  doi: 10.1109/TIP.2021.3068649
– ident: ref36
  doi: 10.1109/TIP.2020.2975909
– ident: ref53
  doi: 10.1109/CVPR.2018.00337
– ident: ref49
  doi: 10.1109/TMM.2017.2652069
– ident: ref16
  doi: 10.1109/CVPR.2019.00065
– ident: ref52
  doi: 10.1109/TCSVT.2020.3021128
– ident: ref43
  doi: 10.1109/tcsvt.2022.3207020
– ident: ref9
  doi: 10.1109/CVPRW.2018.00127
– ident: ref10
  doi: 10.1145/2651362
– ident: ref50
  doi: 10.1109/cvpr46437.2021.01041
– ident: ref26
  doi: 10.1109/CVPR.2018.00856
– ident: ref1
  doi: 10.1109/ICIP.2019.8803046
– year: 2014
  ident: ref41
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv:1409.1556
  contributor:
    fullname: Simonyan
– ident: ref12
  doi: 10.1109/TIP.2020.3045630
– ident: ref44
  doi: 10.1109/CVPR42600.2020.01079
– ident: ref39
  doi: 10.1109/CVPR42600.2020.00288
– ident: ref54
  doi: 10.1016/j.cviu.2020.103003
– ident: ref17
  doi: 10.1109/CVPR42600.2020.00352
– ident: ref30
  doi: 10.1109/TIP.2018.2855433
– ident: ref5
  doi: 10.1109/TIP.2016.2598681
– ident: ref8
  doi: 10.1109/cvpr42600.2020.00223
SSID ssj0014516
Score 2.5268168
Snippet Single image dehazing is a challenging and illposed problem due to severe information degeneration of images captured in hazy conditions. Remarkable progresses...
Single image dehazing is a challenging and ill-posed problem due to severe information degeneration of images captured in hazy conditions. Remarkable...
SourceID proquest
crossref
pubmed
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Atmospheric modeling
Attention
Attenuation
Deep learning
Degeneration
Dehazing
Fuses
Ill posed problems
Image color analysis
Image reconstruction
Image restoration
Pixels
Regularization
Scattering
Self-Regularization
Title TUSR-Net: Triple Unfolding Single Image Dehazing with Self-Regularization and Dual Feature to Pixel Attention
URI https://ieeexplore.ieee.org/document/10043627
https://www.ncbi.nlm.nih.gov/pubmed/37022903
https://www.proquest.com/docview/2777581356
https://search.proquest.com/docview/2797149879
Volume PP
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB3RnuBASymQUpCRuHBwmthOHPdWtVQtEququyv1FvkrgKDZaptIiF-Px0lWFVIlLlEUW8nEM06eZzxvAD4iTVnRCEm1kJIKqytqXGFow6zSyCZSeIzofp2VF0vx5aa4GZPVYy6M9z5uPvMpnsZYvlvZHl1lR3kkTGdyC7akUkOy1iZkgBVnY2izkFQG3D_FJDN1tLi8SrFMeMoZF3Ks_zL9g2JRlcfxZfzPnO_AbJJw2F7yM-07k9o__5A3_vcr7MLzEXGSk8FEXsAT3-7Bzog-yTi37_fg2QNqwpdwu1jOr-nMd8dksUZnPFkGU4yRKjIPh3Dh8jZ8i8iZ_44M1d8IenTJ3P9q6HWsb78eMzyJbh0564MICDf7tSfdilz9-O2DTF037Lbch-X558XpBR1LM1DLRdXRPHdh5cN5AIdVY_PCmYJZlqmsUVqWPuNMC1eI0pQmABStJHOh3VnPdY6chfwVbLer1r8BwiqfM1MqpjMjMuNUZWzmFDM5N1VZ2QQ-Tcqq7wYGjjquXDJVB8XWqNh6VGwC-zjkD_oNo53A4aTeepyj9zWTMiyWcl6UCXzYNIfZhSET3fpVj30U2lIlVQKvB7PY3JzLDMny-cEjD30LT1G2wV9zCNvduvfvAoLpzPtouX8Bd1DqJQ
link.rule.ids 315,783,787,799,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1BOQAHCqVAoICRuHBwmthJHHNDlGoX2lXVzUq9Rf4KIGgWbRMJ8evxOMmqQqrEJYpiK5l4xsnzjOcNwFukKcubTFCVCUEzo0qqba5pw4xUyCaSO4zoni6K2Sr7fJFfjMnqIRfGORc2n7kYT0Ms365Nj66ywzQQpjNxG-54YF0WQ7rWNmiANWdDcDMXVHjkP0UlE3lYzc9iLBQec8YzMVaAmf5CoazKzQgz_GmOd2ExyThsMPkR952OzZ9_6Bv_-yUewoMRc5IPg5E8gluu3YPdEX-ScXZf7cH9a-SEj-GyWi3P6cJ170m1QXc8WXljDLEqsvQHf2F-6b9G5Mh9Q47qrwR9umTpfjb0PFS434w5nkS1lhz1XgQEnP3GkW5Nzr7_dl6mrhv2W-7D6vhT9XFGx-IM1PCs7GiaWr_24dzDw7IxaW51zgxLZNJIJQqXcKYym2eFLrSHKEoKZn27NY6rFFkL-RPYadetewaElS5lupBMJTpLtJWlNomVTKdcl0VpIng3Kav-NXBw1GHtksjaK7ZGxdajYiPYxyG_1m8Y7QgOJvXW4yy9qpkQfrmU8ryI4M222c8vDJqo1q177CPRlkohI3g6mMX25lwkSJfPn9_w0Ndwd1adntQn88WXF3AP5Ry8Nwew021699LjmU6_Clb8F9vj7XA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TUSR-Net%3A+Triple+Unfolding+Single+Image+Dehazing+with+Self-Regularization+and+Dual+Feature+to+Pixel+Attention&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Song%2C+Xibin&rft.au=Zhou%2C+Dingfu&rft.au=Li%2C+Wei&rft.au=Dai%2C+Yuchao&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=1057-7149&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTIP.2023.3234701&rft.externalDocID=10043627
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon