TUSR-Net: Triple Unfolding Single Image Dehazing with Self-Regularization and Dual Feature to Pixel Attention

Single image dehazing is a challenging and illposed problem due to severe information degeneration of images captured in hazy conditions. Remarkable progresses have been achieved by deep-learning based image dehazing methods, where residual learning is commonly used to separate the hazy image into c...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. PP; p. 1
Main Authors Song, Xibin, Zhou, Dingfu, Li, Wei, Dai, Yuchao, Shen, Zhelun, Zhang, Liangjun, Li, Hongdong
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Single image dehazing is a challenging and illposed problem due to severe information degeneration of images captured in hazy conditions. Remarkable progresses have been achieved by deep-learning based image dehazing methods, where residual learning is commonly used to separate the hazy image into clear and haze components. However, the nature of low similarity between haze and clear components is commonly neglected, while the lack of constraint of contrastive peculiarity between the two components always restricts the performance of these approaches. To deal with these problems, we propose an end-to-end self-regularized network (TUSR-Net) which exploits the contrastive peculiarity of different components of the hazy image, i.e , self-regularization (SR). In specific, the hazy image is separated into clear and hazy components and constraint between different image components, i.e ., self-regularization, is leveraged to pull the recovered clear image closer to groundtruth, which largely promotes the performance of image dehazing. Meanwhile, an effective triple unfolding framework combined with dual feature to pixel attention is proposed to intensify and fuse the intermediate information in feature, channel and pixel levels, respectively, thus features with better representational ability can be obtained. Our TUSR-Net achieves better trade-off between performance and parameter size with weight-sharing strategy and is much more flexible. Experiments on various benchmarking datasets demonstrate the superiority of our TUSR-Net over state-of-the-art single image dehazing methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2023.3234701