On Quadratic Vectorial Bent Functions in Trace Forms

By permutation behavior of certain linearized polynomials, the bentness of quadratic vectorial bent functions of the form $F(x)=\sum\limits_{i = 1}^{k - 1} {{\rm Tr}_m^n \lpar c_ix^{1 + 2^{it}}\rpar + } {\rm Tr}_m^{kt} \lpar c_kx^{1 + 2^{kt}}\rpar$F(x)=∑i=1k−1Trmn(cix1+2it)+Trmkt(ckx1+2kt) is invest...

Full description

Saved in:
Bibliographic Details
Published inChinese Journal of Electronics Vol. 29; no. 5; pp. 865 - 872
Main Authors Zhou, Junchao, Xu, Yunge, Zhang, Wanshan
Format Journal Article
LanguageEnglish
Published Published by the IET on behalf of the CIE 01.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:By permutation behavior of certain linearized polynomials, the bentness of quadratic vectorial bent functions of the form $F(x)=\sum\limits_{i = 1}^{k - 1} {{\rm Tr}_m^n \lpar c_ix^{1 + 2^{it}}\rpar + } {\rm Tr}_m^{kt} \lpar c_kx^{1 + 2^{kt}}\rpar$F(x)=∑i=1k−1Trmn(cix1+2it)+Trmkt(ckx1+2kt) is investigated, where n = 2kt and m | kt with k, t being positive integers. The numerical results show that there exist new quadratic vectorial bent functions obtained up to extended affine equivalence.
ISSN:1022-4653
2075-5597
DOI:10.1049/cje.2020.08.001