Arbuscular mycorrhizal fungi build a bridge for soybeans to recruit Pseudomonas putida

Summary The assembly of the rhizosphere microbiome determines its functionality for plant fitness. Although the interactions between arbuscular mycorrhizal fungi (AMF) and plant growth‐promoting rhizobacteria (PGPR) play important roles in plant growth and disease resistance, research on the divisio...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 246; no. 3; pp. 1276 - 1292
Main Authors Qiu, Wei, Kang, Jie, Ye, Zeming, Yang, Shengdie, Tu, Xiujun, Xie, Penghao, Ge, Jingping, Ping, Wenxiang, Yuan, Jun
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.05.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary The assembly of the rhizosphere microbiome determines its functionality for plant fitness. Although the interactions between arbuscular mycorrhizal fungi (AMF) and plant growth‐promoting rhizobacteria (PGPR) play important roles in plant growth and disease resistance, research on the division of labor among the members of the symbionts formed among plants, AMF, and PGPR, as well as the flow of carbon sources, is still insufficient. To address the above questions, we used soybean (Glycine max), Funneliformis mosseae, and Pseudomonas putida KT2440 as research subjects to establish rhizobiont interactions and to elucidate the signal exchange and division of labor among these components. Funneliformis mosseae can attract P. putida KT2440 by secreting cysteine as a signaling molecule and can promote the colonization of P. putida KT2440 in the soybean rhizosphere. Colonized P. putida KT2440 can stimulate the l‐tryptophan secretion of the host plant and can lead to the upregulation of genes involved in converting methyl‐indole‐3‐acetic acid (Me‐IAA) into IAA in response to l‐tryptophan stimulation. Collectively, we decipher the tripartite mechanism of rhizosphere microbial community assembly via cross‐kingdom interactions.
AbstractList The assembly of the rhizosphere microbiome determines its functionality for plant fitness. Although the interactions between arbuscular mycorrhizal fungi (AMF) and plant growth‐promoting rhizobacteria (PGPR) play important roles in plant growth and disease resistance, research on the division of labor among the members of the symbionts formed among plants, AMF, and PGPR, as well as the flow of carbon sources, is still insufficient. To address the above questions, we used soybean ( Glycine max ), Funneliformis mosseae , and Pseudomonas putida KT2440 as research subjects to establish rhizobiont interactions and to elucidate the signal exchange and division of labor among these components. Funneliformis mosseae can attract P. putida KT2440 by secreting cysteine as a signaling molecule and can promote the colonization of P. putida KT2440 in the soybean rhizosphere. Colonized P. putida KT2440 can stimulate the l ‐tryptophan secretion of the host plant and can lead to the upregulation of genes involved in converting methyl‐indole‐3‐acetic acid (Me‐IAA) into IAA in response to l ‐tryptophan stimulation. Collectively, we decipher the tripartite mechanism of rhizosphere microbial community assembly via cross‐kingdom interactions.
Summary The assembly of the rhizosphere microbiome determines its functionality for plant fitness. Although the interactions between arbuscular mycorrhizal fungi (AMF) and plant growth‐promoting rhizobacteria (PGPR) play important roles in plant growth and disease resistance, research on the division of labor among the members of the symbionts formed among plants, AMF, and PGPR, as well as the flow of carbon sources, is still insufficient. To address the above questions, we used soybean (Glycine max), Funneliformis mosseae, and Pseudomonas putida KT2440 as research subjects to establish rhizobiont interactions and to elucidate the signal exchange and division of labor among these components. Funneliformis mosseae can attract P. putida KT2440 by secreting cysteine as a signaling molecule and can promote the colonization of P. putida KT2440 in the soybean rhizosphere. Colonized P. putida KT2440 can stimulate the l‐tryptophan secretion of the host plant and can lead to the upregulation of genes involved in converting methyl‐indole‐3‐acetic acid (Me‐IAA) into IAA in response to l‐tryptophan stimulation. Collectively, we decipher the tripartite mechanism of rhizosphere microbial community assembly via cross‐kingdom interactions.
The assembly of the rhizosphere microbiome determines its functionality for plant fitness. Although the interactions between arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) play important roles in plant growth and disease resistance, research on the division of labor among the members of the symbionts formed among plants, AMF, and PGPR, as well as the flow of carbon sources, is still insufficient. To address the above questions, we used soybean (Glycine max), Funneliformis mosseae, and Pseudomonas putida KT2440 as research subjects to establish rhizobiont interactions and to elucidate the signal exchange and division of labor among these components. Funneliformis mosseae can attract P. putida KT2440 by secreting cysteine as a signaling molecule and can promote the colonization of P. putida KT2440 in the soybean rhizosphere. Colonized P. putida KT2440 can stimulate the l-tryptophan secretion of the host plant and can lead to the upregulation of genes involved in converting methyl-indole-3-acetic acid (Me-IAA) into IAA in response to l-tryptophan stimulation. Collectively, we decipher the tripartite mechanism of rhizosphere microbial community assembly via cross-kingdom interactions.The assembly of the rhizosphere microbiome determines its functionality for plant fitness. Although the interactions between arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) play important roles in plant growth and disease resistance, research on the division of labor among the members of the symbionts formed among plants, AMF, and PGPR, as well as the flow of carbon sources, is still insufficient. To address the above questions, we used soybean (Glycine max), Funneliformis mosseae, and Pseudomonas putida KT2440 as research subjects to establish rhizobiont interactions and to elucidate the signal exchange and division of labor among these components. Funneliformis mosseae can attract P. putida KT2440 by secreting cysteine as a signaling molecule and can promote the colonization of P. putida KT2440 in the soybean rhizosphere. Colonized P. putida KT2440 can stimulate the l-tryptophan secretion of the host plant and can lead to the upregulation of genes involved in converting methyl-indole-3-acetic acid (Me-IAA) into IAA in response to l-tryptophan stimulation. Collectively, we decipher the tripartite mechanism of rhizosphere microbial community assembly via cross-kingdom interactions.
Author Ping, Wenxiang
Yang, Shengdie
Tu, Xiujun
Yuan, Jun
Kang, Jie
Ye, Zeming
Qiu, Wei
Xie, Penghao
Ge, Jingping
Author_xml – sequence: 1
  givenname: Wei
  surname: Qiu
  fullname: Qiu, Wei
  organization: Nanjing Agricultural University
– sequence: 2
  givenname: Jie
  surname: Kang
  fullname: Kang, Jie
  organization: Heilongjiang University
– sequence: 3
  givenname: Zeming
  surname: Ye
  fullname: Ye, Zeming
  organization: Heilongjiang University
– sequence: 4
  givenname: Shengdie
  surname: Yang
  fullname: Yang, Shengdie
  organization: Nanjing Agricultural University
– sequence: 5
  givenname: Xiujun
  surname: Tu
  fullname: Tu, Xiujun
  organization: Heilongjiang University
– sequence: 6
  givenname: Penghao
  surname: Xie
  fullname: Xie, Penghao
  organization: Nanjing Agricultural University
– sequence: 7
  givenname: Jingping
  surname: Ge
  fullname: Ge, Jingping
  email: gejingping@126.com
  organization: Heilongjiang University
– sequence: 8
  givenname: Wenxiang
  surname: Ping
  fullname: Ping, Wenxiang
  email: wenxiangp@aliyun.com
  organization: Heilongjiang University
– sequence: 9
  givenname: Jun
  orcidid: 0000-0002-8265-0239
  surname: Yuan
  fullname: Yuan, Jun
  email: junyuan@njau.edu.cn
  organization: Nanjing Agricultural University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40105301$$D View this record in MEDLINE/PubMed
BookMark eNqF0U1LHTEUBuBQlHq1XfQPlICbdjF6MslkMksRrQVRF1a6G5LJiUZmJtfkBrn99cZe7aIghgPZPOfk490lW3OYkZAvDA5YWYfz8u6gBZDiA1kwIbtKMd5ukQVArSop5O8dspvSPQB0jaw_kh0BDBoObEFujqLJacijjnRaDyHGO_9Hj9Tl-dZTk_1oqaYmenuL1IVIU1gb1HOiq0AjDjH7Fb1KmG2YwqwTXeaVt_oT2XZ6TPj5Zd8jv05Pro_PqvPLHz-Pj86rgQslqgaNaNBage2ABjrDJbfIOq4Mr6VmwJ3TrmlYA-XKjesYd7U1vO20tkwD3yPfNnOXMTxkTKt-8mnAcdQzhpx6XoNkqpR4n7JWKS4kawvd_4_ehxzn8pCilGJdGfd89tcXlc2Etl9GP-m47l8_t4DvGzDEkFJE948w6J-D60tw_d_gij3c2Ec_4vpt2F9cnW06ngCdFJg-
Cites_doi 10.1111/nph.18010
10.1016/j.femsre.2004.11.005
10.1094/MPMI-07-16-0131-R
10.1146/annurev-micro-012420-081224
10.1093/femsec/fiw179
10.1126/scitranslmed.abk0855
10.1038/s41467-023-40184-2
10.1016/j.xplc.2023.100550
10.1016/j.biortech.2021.125483
10.1111/nph.18886
10.1073/pnas.2107417118
10.1111/nph.18943
10.1007/s005720100097
10.1016/j.plaphy.2023.108245
10.1016/j.cub.2020.08.007
10.1126/science.abe0725
10.1016/j.tibs.2022.07.001
10.1016/j.micres.2023.127564
10.1038/s41396-018-0171-4
10.1186/s40168-022-01236-9
10.1186/s40168-023-01466-5
10.1038/s41396-020-0720-5
10.1111/nph.18504
10.1186/s40168-022-01375-z
10.1016/j.scitotenv.2024.170417
10.1038/nchembio.739
10.1002/imt2.37
10.3390/metabo13050664
10.3389/fpls.2020.516818
10.1002/wics.147
10.1111/nph.17081
10.3389/fpls.2015.00707
10.1038/s41589-023-01462-8
10.1111/1462-2920.16333
10.1038/s41467-018-05122-7
10.1111/pce.13928
10.1186/s13059-014-0550-8
10.1007/s00374-021-01572-2
10.1016/j.soilbio.2023.109215
10.1094/MPMI.2002.15.11.1173
10.1016/j.molp.2023.03.009
10.1186/s40168-024-01776-2
10.1016/j.ecoenv.2020.110374
10.1016/j.soilbio.2017.10.022
10.1126/science.276.5313.734
10.1016/j.micres.2023.127350
10.1111/j.1758-2229.2009.00091.x
10.1111/nph.13838
10.1111/j.1469-8137.2009.03069.x
10.1093/procel/pwad024
10.7717/peerj.2584
10.1111/nph.19677
10.1104/pp.108.127613
10.1128/AEM.03006-05
10.1038/nrmicro3218
10.1016/j.heliyon.2023.e14193
10.1073/pnas.2013305117
10.1146/annurev-arplant-050312-120106
10.3390/ijms21228740
10.1007/s00284-008-9137-5
10.1016/j.plantsci.2024.112028
10.1007/s00374-022-01683-4
10.1093/nar/gki038
10.3390/ijms23031694
10.1038/s41467-021-24005-y
10.1038/s41467-023-43631-2
10.1038/s41564-022-01070-7
10.1038/35095041
10.1038/s41467-021-21686-3
10.1111/jipb.13268
10.1111/nph.18281
10.1038/s41396-020-00759-z
10.1038/s41467-020-18994-5
10.1016/j.phytochem.2006.12.005
10.1007/s11427-022-2279-5
ContentType Journal Article
Copyright 2025 The Author(s). © 2025 New Phytologist Foundation.
2025 The Author(s). New Phytologist © 2025 New Phytologist Foundation.
Copyright © 2025 New Phytologist Trust
Copyright_xml – notice: 2025 The Author(s). © 2025 New Phytologist Foundation.
– notice: 2025 The Author(s). New Phytologist © 2025 New Phytologist Foundation.
– notice: Copyright © 2025 New Phytologist Trust
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/nph.70064
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
AGRICOLA
MEDLINE

Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 1292
ExternalDocumentID 40105301
10_1111_nph_70064
NPH70064
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 42322708; 42277297
– fundername: Heilongjiang Provincial Natural Science Foundation of China
  funderid: PL2024D015
– fundername: the Basic Scientific Research Operating Expenses of Colleges and Universities in Heilongjiang Province, China
  funderid: 2023‐KYYWF‐1448
– fundername: the Scientific Research Project of Ecological Environment Protection of Heilongjiang Provincial Department of Ecological Environment, China
  funderid: HST2022TR004
– fundername: National Natural Science Foundation of China
  grantid: 42322708
– fundername: the Scientific Research Project of Ecological Environment Protection of Heilongjiang Provincial Department of Ecological Environment, China
  grantid: HST2022TR004
– fundername: National Natural Science Foundation of China
  grantid: 42277297
– fundername: the Basic Scientific Research Operating Expenses of Colleges and Universities in Heilongjiang Province, China
  grantid: 2023-KYYWF-1448
– fundername: Heilongjiang Provincial Natural Science Foundation of China
  grantid: PL2024D015
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
29N
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAHQN
AAISJ
AAKGQ
AAMNL
AANLZ
AAONW
AASGY
AASVR
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACQPF
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGUYK
AHBTC
AHXOZ
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RCA
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XOL
YNT
YQT
YXE
ZCG
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAYXX
ABGDZ
ADXHL
AEFGJ
AEYWJ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c3484-5eb45edd4e7ceb09b363de1938b326a103ffaf551504015f913f2db379aad1a03
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri Jul 11 17:29:35 EDT 2025
Sun Aug 24 03:53:02 EDT 2025
Thu Jul 24 06:41:19 EDT 2025
Fri Apr 11 01:32:00 EDT 2025
Sun Jul 06 05:08:52 EDT 2025
Thu Apr 10 11:07:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords arbuscular mycorrhizal fungi
root exudation
hypha secretions
recruitment
Pseudomonas putida KT2440
Funneliformis mosseae
plant microbiome
Language English
License 2025 The Author(s). New Phytologist © 2025 New Phytologist Foundation.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3484-5eb45edd4e7ceb09b363de1938b326a103ffaf551504015f913f2db379aad1a03
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8265-0239
PMID 40105301
PQID 3188198430
PQPubID 2026848
PageCount 17
ParticipantIDs proquest_miscellaneous_3206186184
proquest_miscellaneous_3178834617
proquest_journals_3188198430
pubmed_primary_40105301
crossref_primary_10_1111_nph_70064
wiley_primary_10_1111_nph_70064_NPH70064
PublicationCentury 2000
PublicationDate May 2025
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: May 2025
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2022; 375
2002; 15
2006; 72
2023; 4
2023; 9
2013; 64
1997; 276
2022; 23
2010; 185
2020; 14
2024; 188
2024; 342
2008; 148
2022; 64
2020; 11
2005; 29
2018; 9
2024; 917
2017; 30
2023; 25
2023; 66
2021; 118
2014; 15
2024; 20
2021; 230
2020; 44
2024; 279
2001; 11
2010; 2
2005; 33
2014; 12
2007; 68
2023; 71
2001; 413
2015; 6
2023; 13
2023; 14
2023; 11
2010
2023; 16
2023c; 14
2008
2022; 47
2024; 241
2008; 56
2016; 92
2024; 12
2023; 206
2011; 3
2022; 236
2022; 234
2016; 4
2021; 57
2021; 15
2021; 12
2020; 30
2022; 181
2018; 116
2020; 74
2023a; 238
2023; 271
2022; 7
2021; 337
2020; 194
2020; 117
2016; 210
2022; 59
2015
2022; 10
2022; 1
2020; 21
2023; 239
2013
2020; 65
2018; 12
2012; 8
2023b; 14
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
R Core Team (e_1_2_9_51_1) 2015
e_1_2_9_73_1
e_1_2_9_79_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
Leung HW (e_1_2_9_38_1) 2020; 14
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
Wang XL (e_1_2_9_63_1) 2020; 65
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
Jiao HW (e_1_2_9_29_1) 2022; 181
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
Schüssler A (e_1_2_9_56_1) 2010
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
Yang SD (e_1_2_9_72_1) 2023; 71
e_1_2_9_7_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
Smith SE (e_1_2_9_58_1) 2008
e_1_2_9_69_1
References_xml – volume: 11
  year: 2020
  article-title: Biofertilizers as strategies to improve photosynthetic apparatus, growth, and drought stress tolerance in the date palm
  publication-title: Frontiers in Plant Science
– volume: 14
  start-page: 7758
  year: 2023
  article-title: Discovery and remodeling of as a microbial platform for efficient formic acid biorefinery
  publication-title: Nature Communications
– volume: 238
  start-page: 2634
  year: 2023a
  end-page: 2650
  article-title: Deciphering the mechanism of fungal pathogen‐induced disease‐suppressive soil
  publication-title: New Phytologist
– volume: 33
  start-page: D294
  year: 2005
  end-page: D296
  article-title: The Ribosomal Database Project (RDP‐II): sequences and tools for high‐throughput rRNA analysis
  publication-title: Nucleic Acids Research
– volume: 188
  start-page: 109215
  year: 2024
  article-title: Microbial interactions for nutrient acquisition in soil: miners, scavengers, and carriers
  publication-title: Soil Biology and Biochemistry
– volume: 194
  start-page: 110374
  year: 2020
  article-title: Root exudates‐driven rhizosphere recruitment of the plant growth‐promoting rhizobacterium KLBMP 4941 and its growth‐promoting effect on the coastal halophyte under salt stress
  publication-title: Ecotoxicology and Environmental Safety
– volume: 342
  start-page: 112028
  year: 2024
  article-title: configures Arabidopsis root architecture through modulating the sensing systems for phosphate and iron acquisition
  publication-title: Plant Science
– volume: 68
  start-page: 401
  year: 2007
  end-page: 406
  article-title: Camalexin
  publication-title: Phytochemistry
– volume: 917
  year: 2024
  article-title: Above‐ and below‐ground feedback loop of maize is jointly enhanced by plant growth‐promoting rhizobacteria and arbuscular mycorrhizal fungi in drier soil
  publication-title: Science of the Total Environment
– volume: 181
  year: 2022
  article-title: An improved chemotaxis assay for the rapid identification of rhizobacterial chemoattractants in root exudates
  publication-title: Journal of Visualized Experiments
– volume: 12
  start-page: 263
  year: 2014
  end-page: 273
  article-title: Explaining microbial genomic diversity in light of evolutionary ecology
  publication-title: Nature Reviews Microbiology
– volume: 1
  year: 2022
  article-title: Biochar stimulates tomato roots to recruit a bacterial assemblage contributing to disease resistance against wilt
  publication-title: iMeta
– volume: 3
  start-page: 180
  year: 2011
  end-page: 185
  article-title: 2
  publication-title: Wiley Interdisciplinary Reviews: Computational Statistics
– volume: 29
  start-page: 795
  year: 2005
  end-page: 811
  article-title: Living in a fungal world: impact of fungi on soil bacterial niche development
  publication-title: FEMS Microbiology Reviews
– volume: 12
  start-page: 3829
  year: 2021
  article-title: Rapid evolution of bacterial mutualism in the plant rhizosphere
  publication-title: Nature Communications
– volume: 12
  start-page: 1425
  year: 2021
  article-title: Global profiling of distinct cysteine redox forms reveals wide‐ranging redox regulation in
  publication-title: Nature Communications
– volume: 71
  year: 2023
  article-title: Emerging pathways for engineering the rhizosphere microbiome for optimal plant health
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 413
  start-page: 297
  year: 2001
  end-page: 299
  article-title: An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material
  publication-title: Nature
– volume: 23
  start-page: 1694
  year: 2022
  article-title: Bacterial inoculant and sucrose amendments improve the growth of L. by reprograming its metabolite composition and altering its soil microbial community
  publication-title: International Journal of Molecular Sciences
– volume: 66
  start-page: 1728
  year: 2023
  end-page: 1741
  article-title: Growth substrates alter aboveground plant microbial and metabolic properties thereby influencing insect herbivore performance
  publication-title: Science China Life Sciences
– volume: 11
  year: 2020
  article-title: A bacterial endophyte exploits chemotropism of a fungal pathogen for plant colonization
  publication-title: Nature Communications
– volume: 234
  start-page: 1914
  year: 2022
  end-page: 1918
  article-title: Ecosystem consequences of introducing plant growth promoting rhizobacteria to managed systems and potential legacy effects
  publication-title: New Phytologist
– volume: 210
  start-page: 1022
  year: 2016
  end-page: 1032
  article-title: Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate‐solubilizing bacterium
  publication-title: New Phytologist
– volume: 236
  start-page: 210
  year: 2022
  end-page: 221
  article-title: Routes to roots: direct evidence of water transport by arbuscular mycorrhizal fungi to host plants
  publication-title: New Phytologist
– volume: 279
  year: 2024
  article-title: Harnessing root exudates for plant microbiome engineering and stress resistance in plants
  publication-title: Microbiological Research
– volume: 276
  start-page: 734
  year: 1997
  end-page: 740
  article-title: A molecular view of microbial diversity and the biosphere
  publication-title: Science
– year: 2008
– volume: 44
  start-page: 613
  year: 2020
  end-page: 628
  article-title: Root exudates drive soil‐microbe‐nutrient feedbacks in response to plant growth
  publication-title: Plant, Cell & Environment
– volume: 11
  start-page: 45
  year: 2023
  article-title: Mycorrhiza‐mediated recruitment of complete denitrifying reduces N O emissions from soil
  publication-title: Microbiome
– volume: 6
  start-page: 707
  year: 2015
  article-title: Meta‐analysis approach for assessing the diversity and specificity of belowground root and microbial volatiles
  publication-title: Frontiers in Plant Science
– volume: 9
  year: 2023
  article-title: Interactive effects of and salicylic acid for mitigating drought tolerance in canola ( L.)
  publication-title: Heliyon
– volume: 30
  start-page: 53
  year: 2017
  article-title: Identification of root‐secreted compounds involved in the communication between cucumber, the beneficial , and the soil‐borne pathogen
  publication-title: Molecular Plant–Microbe Interactions
– volume: 271
  year: 2023
  article-title: Can arbuscular mycorrhizal fungi and rhizobacteria facilitate P uptake in maize plants under water stress?
  publication-title: Microbiological Research
– volume: 10
  start-page: 1
  year: 2022
  end-page: 15
  article-title: Specific metabolites drive the deterministic assembly of diseased rhizosphere microbiome through weakening microbial degradation of autotoxin
  publication-title: Microbiome
– volume: 116
  start-page: 419
  year: 2018
  end-page: 430
  article-title: Alive and kicking: why dormant soil microrganisms matter
  publication-title: Soil Biology and Biochemistry
– volume: 8
  start-page: 26
  year: 2012
  end-page: 35
  article-title: Microbial metabolic exchange the chemotype to phenotype link
  publication-title: Nature Chemical Biology
– volume: 7
  start-page: 434
  year: 2022
  end-page: 450
  article-title: Cysteine dependence of is a potential therapeutic target for vaginal microbiota modulation
  publication-title: Nature Microbiology
– volume: 4
  year: 2023
  article-title: Comparative oxidation proteomics analyses suggest redox regulation of cytosolic translation in rice leaves upon infection
  publication-title: Plant Communications
– volume: 25
  start-page: 867
  year: 2023
  end-page: 879
  article-title: Hyphosphere interactions between and promote carbon–phosphorus exchange at the peri‐arbuscular space in
  publication-title: Environmental Microbiology
– year: 2015
– volume: 56
  start-page: 625
  year: 2008
  end-page: 632
  article-title: Assessment of the role of chemotaxis and biofilm formation as requirements for colonization of roots and seeds of soybean plants by BNM339
  publication-title: Current Microbiology
– volume: 72
  start-page: 5069
  year: 2006
  end-page: 5072
  article-title: Greengenes, a chimera‐checked 16S rRNA gene database and workbench compatible with ARB
  publication-title: Applied and Environmental Microbiology
– volume: 12
  start-page: 30
  year: 2024
  article-title: A tripartite bacterial–fungal–plant symbiosis in the mycorrhiza‐shaped microbiome drives plant growth and mycorrhization
  publication-title: Microbiome
– volume: 21
  start-page: 8740
  year: 2020
  article-title: Genome mining and evaluation of the biocontrol potential of BRZ63, a new endophyte of oilseed rape ( L.) against fungal pathogens
  publication-title: International Journal of Molecular Sciences
– volume: 64
  start-page: 1339
  year: 2022
  end-page: 1351
  article-title: A feedback regulation between ARF7‐mediated auxin signaling and auxin homeostasis involving MES17 affects plant gravitropism
  publication-title: Journal of Integrative Plant Biology
– volume: 375
  start-page: 1
  year: 2022
  end-page: 10
  article-title: Soil microbiota as game‐changers in restoration of degraded lands
  publication-title: Science
– volume: 4
  year: 2016
  article-title: V : a versatile open source tool for metagenomics
  publication-title: PeerJ
– volume: 15
  start-page: 1173
  year: 2002
  end-page: 1180
  article-title: Flagella‐driven chemotaxis towards exudate components is an important trait for tomato root colonization by
  publication-title: Molecular Plant–Microbe Interactions
– volume: 14
  year: 2020
  article-title: Risk assessment with gut microbiome and metabolite markers in NAFLD development
  publication-title: Science Translational Medicine
– volume: 64
  start-page: 807
  year: 2013
  end-page: 838
  article-title: Structure and functions of the bacterial microbiota of plants
  publication-title: Annual Review of Plant Biology
– volume: 11
  start-page: 3
  year: 2001
  end-page: 42
  article-title: Water relations, drought and vesicular‐arbuscular mycorrhizal symbiosis
  publication-title: Mycorrhiza
– volume: 118
  year: 2021
  article-title: Coordinated bacterial and plant sulfur metabolism in sp. SA187‐induced plant salt stress tolerance
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 2
  start-page: 381
  year: 2010
  end-page: 388
  article-title: KT2440 causes induced systemic resistance and changes in Arabidopsis root exudation
  publication-title: Environmental Microbiology Reports
– volume: 236
  start-page: 1988
  year: 2022
  end-page: 1998
  article-title: Anthocyanin pigmentation as a quantitative visual marker for arbuscular mycorrhizal fungal colonization of roots
  publication-title: New Phytologist
– volume: 65
  start-page: 983
  year: 2020
  end-page: 986
  article-title: An amplification‐selection model for quantified rhizosphere microbiota assembly
  publication-title: Scientific Bulletin
– volume: 14
  start-page: 713
  year: 2023b
  end-page: 725
  article-title: The best practice for microbiome analysis using R
  publication-title: Protein & Cell
– volume: 10
  start-page: 36
  year: 2022
  article-title: Long‐term effect of epigenetic modification in plant–microbe interactions: modification of DNA methylation induced by plant growth‐promoting bacteria mediates promotion process
  publication-title: Microbiome
– volume: 230
  start-page: 304
  year: 2021
  end-page: 315
  article-title: Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae
  publication-title: New Phytologist
– volume: 239
  start-page: 752
  year: 2023
  end-page: 765
  article-title: Home‐based microbial solution to boost crop growth in low‐fertility soil
  publication-title: New Phytologist
– volume: 241
  start-page: 2207
  year: 2024
  end-page: 2222
  article-title: The receptor kinase RiSho1 in regulates arbuscule development and drought tolerance during arbuscular mycorrhizal symbiosis
  publication-title: New Phytologist
– volume: 59
  start-page: 17
  year: 2022
  end-page: 34
  article-title: Hyphosphere microbiome of arbuscular mycorrhizal fungi: a realm of unknowns
  publication-title: Biology and Fertility of Soils
– volume: 9
  start-page: 2738
  year: 2018
  article-title: Root exudate metabolites drive plant–soil feedbacks on growth and defense by shaping the rhizosphere microbiota
  publication-title: Nature Communications
– year: 2010
– volume: 47
  start-page: 839
  year: 2022
  end-page: 850
  article-title: News about amino acid metabolism in plant–microbe interactions
  publication-title: Trends in Biochemical Sciences
– volume: 12
  start-page: 2339
  year: 2018
  end-page: 2351
  article-title: Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium
  publication-title: The ISME Journal
– volume: 206
  start-page: 108245
  year: 2023
  article-title: High red/far‐red ratio promotes root colonization of A21‐4 in tomato by root exudates‐stimulated chemotaxis and biofilm formation
  publication-title: Plant Physiology and Biochemistry
– volume: 57
  start-page: 827
  year: 2021
  end-page: 836
  article-title: Competition for S‐containing amino acids between rhizosphere microorganisms and plant roots: the role of cysteine in plant S acquisition
  publication-title: Biology and Fertility of Soils
– volume: 74
  start-page: 267
  year: 2020
  end-page: 290
  article-title: Chemical mediators at the bacterial‐fungal interface
  publication-title: Annual Review of Microbiology
– volume: 14
  start-page: 2936
  year: 2020
  end-page: 2950
  article-title: Predicting disease occurrence with high accuracy based on soil macroecological patterns of wilt
  publication-title: ISME Journal
– volume: 30
  start-page: R1176
  year: 2020
  end-page: R1188
  article-title: Trophic interactions and the drivers of microbial community assembly
  publication-title: Current Biology
– volume: 185
  start-page: 543
  year: 2010
  end-page: 553
  article-title: Architecture of the wood‐wide web: spp. genets link multiple Douglas‐fir cohorts
  publication-title: New Phytologist
– volume: 15
  start-page: 1
  year: 2014
  end-page: 21
  article-title: Moderated estimation of fold change and dispersion for RNA‐seq data with DES 2
  publication-title: Genome Biology
– volume: 13
  year: 2023
  article-title: Certain tomato root exudates induced by NRCB010 enhance its rhizosphere colonization capability
  publication-title: Metabolites
– volume: 15
  start-page: 397
  year: 2021
  end-page: 408
  article-title: Achieving similar root microbiota composition in neighbouring plants through airborne signalling
  publication-title: The ISME Journal
– volume: 117
  start-page: 31500
  year: 2020
  end-page: 31509
  article-title: The Arabidopsis NRT1/PTR FAMILY protein NPF7.3/NRT1.5 is an indole‐3‐butyric acid transporter involved in root gravitropism
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 148
  start-page: 1547
  year: 2008
  end-page: 1556
  article-title: Root‐secreted malic acid recruits beneficial soil bacteria
  publication-title: Plant Physiology
– volume: 16
  start-page: 849
  year: 2023
  end-page: 864
  article-title: Interspecific plant interaction via root exudates structures the disease suppressiveness of rhizosphere microbiomes
  publication-title: Molecular Plant
– volume: 20
  start-page: 473
  year: 2024
  end-page: 483
  article-title: Volatile methyl jasmonate from roots triggers host‐beneficial soil microbiome biofilms
  publication-title: Nature Chemical Biology
– volume: 14
  start-page: 4497
  year: 2023c
  article-title: Tapping the rhizosphere metabolites for the prebiotic control of soil‐borne bacterial wilt disease
  publication-title: Nature Communications
– volume: 92
  year: 2016
  article-title: Bacteria in decomposing wood and their interactions with wood‐decay fungi
  publication-title: FEMS Microbiology Ecology
– volume: 337
  start-page: 127097
  year: 2021
  article-title: Evaluation of humic acid conversion during composting under amoxicillin stress: emphasizes the driving role of core microbial communities
  publication-title: Bioresource Technology
– year: 2013
– ident: e_1_2_9_26_1
  doi: 10.1111/nph.18010
– ident: e_1_2_9_16_1
  doi: 10.1016/j.femsre.2004.11.005
– ident: e_1_2_9_41_1
  doi: 10.1094/MPMI-07-16-0131-R
– ident: e_1_2_9_55_1
  doi: 10.1146/annurev-micro-012420-081224
– ident: e_1_2_9_32_1
  doi: 10.1093/femsec/fiw179
– volume: 14
  year: 2020
  ident: e_1_2_9_38_1
  article-title: Risk assessment with gut microbiome and metabolite markers in NAFLD development
  publication-title: Science Translational Medicine
  doi: 10.1126/scitranslmed.abk0855
– volume: 181
  year: 2022
  ident: e_1_2_9_29_1
  article-title: An improved chemotaxis assay for the rapid identification of rhizobacterial chemoattractants in root exudates
  publication-title: Journal of Visualized Experiments
– ident: e_1_2_9_68_1
  doi: 10.1038/s41467-023-40184-2
– ident: e_1_2_9_11_1
  doi: 10.1016/j.xplc.2023.100550
– ident: e_1_2_9_74_1
  doi: 10.1016/j.biortech.2021.125483
– ident: e_1_2_9_66_1
  doi: 10.1111/nph.18886
– ident: e_1_2_9_3_1
  doi: 10.1073/pnas.2107417118
– ident: e_1_2_9_28_1
  doi: 10.1111/nph.18943
– ident: e_1_2_9_5_1
  doi: 10.1007/s005720100097
– ident: e_1_2_9_47_1
– ident: e_1_2_9_23_1
  doi: 10.1016/j.plaphy.2023.108245
– ident: e_1_2_9_22_1
  doi: 10.1016/j.cub.2020.08.007
– ident: e_1_2_9_13_1
  doi: 10.1126/science.abe0725
– ident: e_1_2_9_46_1
  doi: 10.1016/j.tibs.2022.07.001
– ident: e_1_2_9_2_1
  doi: 10.1016/j.micres.2023.127564
– ident: e_1_2_9_80_1
  doi: 10.1038/s41396-018-0171-4
– ident: e_1_2_9_10_1
  doi: 10.1186/s40168-022-01236-9
– ident: e_1_2_9_40_1
  doi: 10.1186/s40168-023-01466-5
– ident: e_1_2_9_76_1
  doi: 10.1038/s41396-020-0720-5
– ident: e_1_2_9_37_1
  doi: 10.1111/nph.18504
– ident: e_1_2_9_69_1
  doi: 10.1186/s40168-022-01375-z
– ident: e_1_2_9_34_1
  doi: 10.1016/j.scitotenv.2024.170417
– ident: e_1_2_9_50_1
  doi: 10.1038/nchembio.739
– ident: e_1_2_9_30_1
  doi: 10.1002/imt2.37
– ident: e_1_2_9_79_1
  doi: 10.3390/metabo13050664
– ident: e_1_2_9_4_1
  doi: 10.3389/fpls.2020.516818
– ident: e_1_2_9_70_1
  doi: 10.1002/wics.147
– ident: e_1_2_9_27_1
  doi: 10.1111/nph.17081
– ident: e_1_2_9_54_1
  doi: 10.3389/fpls.2015.00707
– volume: 71
  year: 2023
  ident: e_1_2_9_72_1
  article-title: Emerging pathways for engineering the rhizosphere microbiome for optimal plant health
  publication-title: Journal of Agricultural and Food Chemistry
– ident: e_1_2_9_36_1
  doi: 10.1038/s41589-023-01462-8
– ident: e_1_2_9_18_1
  doi: 10.1111/1462-2920.16333
– ident: e_1_2_9_25_1
  doi: 10.1038/s41467-018-05122-7
– ident: e_1_2_9_82_1
  doi: 10.1111/pce.13928
– ident: e_1_2_9_42_1
  doi: 10.1186/s13059-014-0550-8
– ident: e_1_2_9_43_1
  doi: 10.1007/s00374-021-01572-2
– ident: e_1_2_9_9_1
  doi: 10.1016/j.soilbio.2023.109215
– ident: e_1_2_9_65_1
  doi: 10.1094/MPMI.2002.15.11.1173
– ident: e_1_2_9_83_1
  doi: 10.1016/j.molp.2023.03.009
– ident: e_1_2_9_77_1
  doi: 10.1186/s40168-024-01776-2
– volume-title: R: a language and environment for statistical computing
  year: 2015
  ident: e_1_2_9_51_1
– ident: e_1_2_9_71_1
  doi: 10.1016/j.ecoenv.2020.110374
– volume-title: Mycorrhizal symbiosis, 3rd edn
  year: 2008
  ident: e_1_2_9_58_1
– ident: e_1_2_9_31_1
  doi: 10.1016/j.soilbio.2017.10.022
– volume: 65
  start-page: 983
  year: 2020
  ident: e_1_2_9_63_1
  article-title: An amplification‐selection model for quantified rhizosphere microbiota assembly
  publication-title: Scientific Bulletin
– ident: e_1_2_9_48_1
  doi: 10.1126/science.276.5313.734
– ident: e_1_2_9_57_1
  doi: 10.1016/j.micres.2023.127350
– ident: e_1_2_9_44_1
  doi: 10.1111/j.1758-2229.2009.00091.x
– ident: e_1_2_9_81_1
  doi: 10.1111/nph.13838
– ident: e_1_2_9_6_1
  doi: 10.1111/j.1469-8137.2009.03069.x
– ident: e_1_2_9_67_1
  doi: 10.1093/procel/pwad024
– ident: e_1_2_9_52_1
  doi: 10.7717/peerj.2584
– ident: e_1_2_9_62_1
  doi: 10.1111/nph.19677
– ident: e_1_2_9_53_1
  doi: 10.1104/pp.108.127613
– ident: e_1_2_9_17_1
  doi: 10.1128/AEM.03006-05
– ident: e_1_2_9_15_1
  doi: 10.1038/nrmicro3218
– ident: e_1_2_9_59_1
  doi: 10.1016/j.heliyon.2023.e14193
– ident: e_1_2_9_64_1
  doi: 10.1073/pnas.2013305117
– ident: e_1_2_9_8_1
  doi: 10.1146/annurev-arplant-050312-120106
– ident: e_1_2_9_12_1
  doi: 10.3390/ijms21228740
– ident: e_1_2_9_73_1
  doi: 10.1007/s00284-008-9137-5
– ident: e_1_2_9_19_1
  doi: 10.1016/j.plantsci.2024.112028
– ident: e_1_2_9_20_1
  doi: 10.1007/s00374-022-01683-4
– ident: e_1_2_9_14_1
  doi: 10.1093/nar/gki038
– ident: e_1_2_9_61_1
  doi: 10.3390/ijms23031694
– ident: e_1_2_9_39_1
  doi: 10.1038/s41467-021-24005-y
– ident: e_1_2_9_60_1
  doi: 10.1038/s41467-023-43631-2
– ident: e_1_2_9_7_1
  doi: 10.1038/s41564-022-01070-7
– ident: e_1_2_9_24_1
  doi: 10.1038/35095041
– ident: e_1_2_9_45_1
  doi: 10.1038/s41467-021-21686-3
– volume-title: The Glomeromycota: a species list with new families and new genera
  year: 2010
  ident: e_1_2_9_56_1
– ident: e_1_2_9_78_1
  doi: 10.1111/jipb.13268
– ident: e_1_2_9_33_1
  doi: 10.1111/nph.18281
– ident: e_1_2_9_35_1
  doi: 10.1038/s41396-020-00759-z
– ident: e_1_2_9_49_1
  doi: 10.1038/s41467-020-18994-5
– ident: e_1_2_9_21_1
  doi: 10.1016/j.phytochem.2006.12.005
– ident: e_1_2_9_75_1
  doi: 10.1007/s11427-022-2279-5
SSID ssj0009562
Score 2.4874246
Snippet Summary The assembly of the rhizosphere microbiome determines its functionality for plant fitness. Although the interactions between arbuscular mycorrhizal...
The assembly of the rhizosphere microbiome determines its functionality for plant fitness. Although the interactions between arbuscular mycorrhizal fungi (AMF)...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 1276
SubjectTerms Acetic acid
arbuscular mycorrhizal fungi
Arbuscular mycorrhizas
Assembly
carbon
Carbon sources
cysteine
Disease resistance
Division of labor
Fungi
Funneliformis mosseae
Glomeromycota - physiology
Glomus mosseae
Glycine max
Glycine max - microbiology
Host plants
hypha secretions
Indoleacetic acid
Indoleacetic Acids - metabolism
Labor
microbial communities
microbiome
Microbiomes
Microorganisms
Molecules
Mycorrhizae - drug effects
Mycorrhizae - physiology
Plant bacterial diseases
Plant diseases
Plant growth
plant growth-promoting rhizobacteria
plant microbiome
Plant Roots - microbiology
Plants
Pseudomonas putida
Pseudomonas putida - drug effects
Pseudomonas putida - physiology
Pseudomonas putida KT2440
recruitment
Rhizosphere
root exudation
secretion
Soybeans
Symbionts
Symbiosis
Tryptophan
Tryptophan - metabolism
vesicular arbuscular mycorrhizae
Title Arbuscular mycorrhizal fungi build a bridge for soybeans to recruit Pseudomonas putida
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.70064
https://www.ncbi.nlm.nih.gov/pubmed/40105301
https://www.proquest.com/docview/3188198430
https://www.proquest.com/docview/3178834617
https://www.proquest.com/docview/3206186184
Volume 246
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB_K4YMvtlarqaes4kNfciTZTTbBp1Msh2AppZV7KIT9mNhDTI5L8nD9651NLsfVUpG-BTKByc7Xb3ZnZwA-RmhlkEXWj7nhvuBC-Fqk1kcjIssRTdFtDXw_S2ZX4ts8nu_Bp-EuTN8fYrvh5iyj89fOwJWud4y8XN5MpIuo5H9drZYDRBfRTsPdJBo6MCcimW-6Crkqnu2Xd2PRPYB5F692Aed0H64HVvs6k1-TttETc_tXF8dH_ssBPNsAUTbtNec57GF5CE8-VwQW1y_gx5RWu69RZb_XlKGubha3RE5h8OeCaTdLmynW3_ZihHtZXa01UthjTcXIia7aRcPOa2xtRXquarYkBbfqJVydfr38MvM3Ixh8w0Uq_Bi1iNFagdKgDjLNE26RQF-qCfepMOBFoQpCXTE5gzAuspAXkdVcZkrZUAX8CEZlVeJrYDJUVmquUHIrssRmxgRxqjBLTCKljT34MAgjX_adNvIhQ6H1ybv18WA8iCnfGFudk1siXJMKHnjwfvuazMSdfagSq9bRUK7PBeG1f9BEgZseQDmvB696FdhyItwkUXKGHpx0gnyYxfzsfNY9HP8_6Rt4Grm5wl0h5RhGzarFtwR2Gv2u0-o_Nb_6nA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VFoleSnmUprRgEAcuWSWxEycSlwKtFmhXFWrRXlDkx4Suqiar3eSw_fWMk82qBYEQt0iZSI49j2_s8TcAbyK0Msgi68fccF9wIXwtUuujEZHliKZotwZOR8nwQnwex-M1eNffhen4IVYbbs4yWn_tDNxtSN-y8nJ6OZAupN6DDdfR2zHnf_wa3aLcTaKegzkRyXjJK-TqeFaf3o1Gv0HMu4i1DTnHD-F7P9iu0uRq0NR6YG5-4XH837_Zhq0lFmWHnfI8gjUsH8P99xXhxcUT-HZIE96VqbLrBSWps8vJDYlTJPwxYdq102aKdRe-GEFfNq8WGinysbpi5EdnzaRmZ3NsbEWqruZsSjpu1VO4OD46_zD0l10YfMNFKvwYtYjRWoHSoA4yzRNukXBfqgn6qTDgRaEKAl4x-YMwLrKQF5HVXGZK2VAFfAfWy6rEXWAyVFZqrlByK7LEZsYEcaowS0wipY09eN2vRj7tyDbyPkmh-cnb-fFgv1-nfGlv85w8E0GbVPDAg1er12Qp7vhDlVg1TobSfS4Isv1FJgpcAwFKez141unAaiTCNRMlf-jB23Yl_zzEfHQ2bB_2_l30JTwYnp-e5CefRl-ew2bk2gy3dZX7sF7PGjwg7FPrF62K_wTaTP64
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9RAEC7WVcSL79Xoqq148JIhSXe6EzytrsP4GgZxZQ5C6EfFHcRkmEkOs7_e6mQy7CqKeAukApWu11fd1VUAzxN0KsoTF6bc8lBwIUIjMheiFYnjiLbstgY-TuXkRLybp_M9eDnchen7Q-w23LxldP7aG_jSleeMvFqejpSPqJfgspBR7uc2HH9KznXclcnQglkKOd-2FfJlPLtPLwaj3xDmRcDaRZzxDfg68NoXmnwftY0Z2bNf2jj-58_chOtbJMqOetW5BXtY3YYrr2pCi5s78OWIlrsvUmU_NpSirk4XZ0ROcfDbghk_TJtp1l_3YgR82breGKS4x5qakRddtYuGzdbYupoUXa_ZkjTc6btwMn7z-fUk3M5gCC0XmQhTNCJF5wQqiybKDZfcIaG-zBDw03HEy1KXBLtS8gZxWuYxLxNnuMq1drGO-AHsV3WF94GpWDtluEbFncily62N0kxjLq1UyqUBPBuEUSz7VhvFkKLQ-hTd-gRwOIip2FrbuiC_RMAmEzwK4OnuNdmJP_zQFdatp6FknwsCbH-hSSI_PoCS3gDu9Sqw40T4UaLkDQN40QnyzywW09mke3jw76RP4OrseFx8eDt9_xCuJX7GcFdUeQj7zarFRwR8GvO4U_Cf5NP9Zw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arbuscular+mycorrhizal+fungi+build+a+bridge+for+soybeans+to+recruit+Pseudomonas+putida&rft.jtitle=The+New+phytologist&rft.au=Qiu%2C+Wei&rft.au=Kang%2C+Jie&rft.au=Ye%2C+Zeming&rft.au=Yang%2C+Shengdie&rft.date=2025-05-01&rft.eissn=1469-8137&rft.volume=246&rft.issue=3&rft.spage=1276&rft_id=info:doi/10.1111%2Fnph.70064&rft_id=info%3Apmid%2F40105301&rft.externalDocID=40105301
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon