Arbuscular mycorrhizal fungi build a bridge for soybeans to recruit Pseudomonas putida
Summary The assembly of the rhizosphere microbiome determines its functionality for plant fitness. Although the interactions between arbuscular mycorrhizal fungi (AMF) and plant growth‐promoting rhizobacteria (PGPR) play important roles in plant growth and disease resistance, research on the divisio...
Saved in:
Published in | The New phytologist Vol. 246; no. 3; pp. 1276 - 1292 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.05.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
The assembly of the rhizosphere microbiome determines its functionality for plant fitness. Although the interactions between arbuscular mycorrhizal fungi (AMF) and plant growth‐promoting rhizobacteria (PGPR) play important roles in plant growth and disease resistance, research on the division of labor among the members of the symbionts formed among plants, AMF, and PGPR, as well as the flow of carbon sources, is still insufficient.
To address the above questions, we used soybean (Glycine max), Funneliformis mosseae, and Pseudomonas putida KT2440 as research subjects to establish rhizobiont interactions and to elucidate the signal exchange and division of labor among these components.
Funneliformis mosseae can attract P. putida KT2440 by secreting cysteine as a signaling molecule and can promote the colonization of P. putida KT2440 in the soybean rhizosphere. Colonized P. putida KT2440 can stimulate the l‐tryptophan secretion of the host plant and can lead to the upregulation of genes involved in converting methyl‐indole‐3‐acetic acid (Me‐IAA) into IAA in response to l‐tryptophan stimulation.
Collectively, we decipher the tripartite mechanism of rhizosphere microbial community assembly via cross‐kingdom interactions. |
---|---|
AbstractList | The assembly of the rhizosphere microbiome determines its functionality for plant fitness. Although the interactions between arbuscular mycorrhizal fungi (AMF) and plant growth‐promoting rhizobacteria (PGPR) play important roles in plant growth and disease resistance, research on the division of labor among the members of the symbionts formed among plants, AMF, and PGPR, as well as the flow of carbon sources, is still insufficient. To address the above questions, we used soybean ( Glycine max ), Funneliformis mosseae , and Pseudomonas putida KT2440 as research subjects to establish rhizobiont interactions and to elucidate the signal exchange and division of labor among these components. Funneliformis mosseae can attract P. putida KT2440 by secreting cysteine as a signaling molecule and can promote the colonization of P. putida KT2440 in the soybean rhizosphere. Colonized P. putida KT2440 can stimulate the l ‐tryptophan secretion of the host plant and can lead to the upregulation of genes involved in converting methyl‐indole‐3‐acetic acid (Me‐IAA) into IAA in response to l ‐tryptophan stimulation. Collectively, we decipher the tripartite mechanism of rhizosphere microbial community assembly via cross‐kingdom interactions. Summary The assembly of the rhizosphere microbiome determines its functionality for plant fitness. Although the interactions between arbuscular mycorrhizal fungi (AMF) and plant growth‐promoting rhizobacteria (PGPR) play important roles in plant growth and disease resistance, research on the division of labor among the members of the symbionts formed among plants, AMF, and PGPR, as well as the flow of carbon sources, is still insufficient. To address the above questions, we used soybean (Glycine max), Funneliformis mosseae, and Pseudomonas putida KT2440 as research subjects to establish rhizobiont interactions and to elucidate the signal exchange and division of labor among these components. Funneliformis mosseae can attract P. putida KT2440 by secreting cysteine as a signaling molecule and can promote the colonization of P. putida KT2440 in the soybean rhizosphere. Colonized P. putida KT2440 can stimulate the l‐tryptophan secretion of the host plant and can lead to the upregulation of genes involved in converting methyl‐indole‐3‐acetic acid (Me‐IAA) into IAA in response to l‐tryptophan stimulation. Collectively, we decipher the tripartite mechanism of rhizosphere microbial community assembly via cross‐kingdom interactions. The assembly of the rhizosphere microbiome determines its functionality for plant fitness. Although the interactions between arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) play important roles in plant growth and disease resistance, research on the division of labor among the members of the symbionts formed among plants, AMF, and PGPR, as well as the flow of carbon sources, is still insufficient. To address the above questions, we used soybean (Glycine max), Funneliformis mosseae, and Pseudomonas putida KT2440 as research subjects to establish rhizobiont interactions and to elucidate the signal exchange and division of labor among these components. Funneliformis mosseae can attract P. putida KT2440 by secreting cysteine as a signaling molecule and can promote the colonization of P. putida KT2440 in the soybean rhizosphere. Colonized P. putida KT2440 can stimulate the l-tryptophan secretion of the host plant and can lead to the upregulation of genes involved in converting methyl-indole-3-acetic acid (Me-IAA) into IAA in response to l-tryptophan stimulation. Collectively, we decipher the tripartite mechanism of rhizosphere microbial community assembly via cross-kingdom interactions.The assembly of the rhizosphere microbiome determines its functionality for plant fitness. Although the interactions between arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) play important roles in plant growth and disease resistance, research on the division of labor among the members of the symbionts formed among plants, AMF, and PGPR, as well as the flow of carbon sources, is still insufficient. To address the above questions, we used soybean (Glycine max), Funneliformis mosseae, and Pseudomonas putida KT2440 as research subjects to establish rhizobiont interactions and to elucidate the signal exchange and division of labor among these components. Funneliformis mosseae can attract P. putida KT2440 by secreting cysteine as a signaling molecule and can promote the colonization of P. putida KT2440 in the soybean rhizosphere. Colonized P. putida KT2440 can stimulate the l-tryptophan secretion of the host plant and can lead to the upregulation of genes involved in converting methyl-indole-3-acetic acid (Me-IAA) into IAA in response to l-tryptophan stimulation. Collectively, we decipher the tripartite mechanism of rhizosphere microbial community assembly via cross-kingdom interactions. |
Author | Ping, Wenxiang Yang, Shengdie Tu, Xiujun Yuan, Jun Kang, Jie Ye, Zeming Qiu, Wei Xie, Penghao Ge, Jingping |
Author_xml | – sequence: 1 givenname: Wei surname: Qiu fullname: Qiu, Wei organization: Nanjing Agricultural University – sequence: 2 givenname: Jie surname: Kang fullname: Kang, Jie organization: Heilongjiang University – sequence: 3 givenname: Zeming surname: Ye fullname: Ye, Zeming organization: Heilongjiang University – sequence: 4 givenname: Shengdie surname: Yang fullname: Yang, Shengdie organization: Nanjing Agricultural University – sequence: 5 givenname: Xiujun surname: Tu fullname: Tu, Xiujun organization: Heilongjiang University – sequence: 6 givenname: Penghao surname: Xie fullname: Xie, Penghao organization: Nanjing Agricultural University – sequence: 7 givenname: Jingping surname: Ge fullname: Ge, Jingping email: gejingping@126.com organization: Heilongjiang University – sequence: 8 givenname: Wenxiang surname: Ping fullname: Ping, Wenxiang email: wenxiangp@aliyun.com organization: Heilongjiang University – sequence: 9 givenname: Jun orcidid: 0000-0002-8265-0239 surname: Yuan fullname: Yuan, Jun email: junyuan@njau.edu.cn organization: Nanjing Agricultural University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40105301$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0U1LHTEUBuBQlHq1XfQPlICbdjF6MslkMksRrQVRF1a6G5LJiUZmJtfkBrn99cZe7aIghgPZPOfk490lW3OYkZAvDA5YWYfz8u6gBZDiA1kwIbtKMd5ukQVArSop5O8dspvSPQB0jaw_kh0BDBoObEFujqLJacijjnRaDyHGO_9Hj9Tl-dZTk_1oqaYmenuL1IVIU1gb1HOiq0AjDjH7Fb1KmG2YwqwTXeaVt_oT2XZ6TPj5Zd8jv05Pro_PqvPLHz-Pj86rgQslqgaNaNBage2ABjrDJbfIOq4Mr6VmwJ3TrmlYA-XKjesYd7U1vO20tkwD3yPfNnOXMTxkTKt-8mnAcdQzhpx6XoNkqpR4n7JWKS4kawvd_4_ehxzn8pCilGJdGfd89tcXlc2Etl9GP-m47l8_t4DvGzDEkFJE948w6J-D60tw_d_gij3c2Ec_4vpt2F9cnW06ngCdFJg- |
Cites_doi | 10.1111/nph.18010 10.1016/j.femsre.2004.11.005 10.1094/MPMI-07-16-0131-R 10.1146/annurev-micro-012420-081224 10.1093/femsec/fiw179 10.1126/scitranslmed.abk0855 10.1038/s41467-023-40184-2 10.1016/j.xplc.2023.100550 10.1016/j.biortech.2021.125483 10.1111/nph.18886 10.1073/pnas.2107417118 10.1111/nph.18943 10.1007/s005720100097 10.1016/j.plaphy.2023.108245 10.1016/j.cub.2020.08.007 10.1126/science.abe0725 10.1016/j.tibs.2022.07.001 10.1016/j.micres.2023.127564 10.1038/s41396-018-0171-4 10.1186/s40168-022-01236-9 10.1186/s40168-023-01466-5 10.1038/s41396-020-0720-5 10.1111/nph.18504 10.1186/s40168-022-01375-z 10.1016/j.scitotenv.2024.170417 10.1038/nchembio.739 10.1002/imt2.37 10.3390/metabo13050664 10.3389/fpls.2020.516818 10.1002/wics.147 10.1111/nph.17081 10.3389/fpls.2015.00707 10.1038/s41589-023-01462-8 10.1111/1462-2920.16333 10.1038/s41467-018-05122-7 10.1111/pce.13928 10.1186/s13059-014-0550-8 10.1007/s00374-021-01572-2 10.1016/j.soilbio.2023.109215 10.1094/MPMI.2002.15.11.1173 10.1016/j.molp.2023.03.009 10.1186/s40168-024-01776-2 10.1016/j.ecoenv.2020.110374 10.1016/j.soilbio.2017.10.022 10.1126/science.276.5313.734 10.1016/j.micres.2023.127350 10.1111/j.1758-2229.2009.00091.x 10.1111/nph.13838 10.1111/j.1469-8137.2009.03069.x 10.1093/procel/pwad024 10.7717/peerj.2584 10.1111/nph.19677 10.1104/pp.108.127613 10.1128/AEM.03006-05 10.1038/nrmicro3218 10.1016/j.heliyon.2023.e14193 10.1073/pnas.2013305117 10.1146/annurev-arplant-050312-120106 10.3390/ijms21228740 10.1007/s00284-008-9137-5 10.1016/j.plantsci.2024.112028 10.1007/s00374-022-01683-4 10.1093/nar/gki038 10.3390/ijms23031694 10.1038/s41467-021-24005-y 10.1038/s41467-023-43631-2 10.1038/s41564-022-01070-7 10.1038/35095041 10.1038/s41467-021-21686-3 10.1111/jipb.13268 10.1111/nph.18281 10.1038/s41396-020-00759-z 10.1038/s41467-020-18994-5 10.1016/j.phytochem.2006.12.005 10.1007/s11427-022-2279-5 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). © 2025 New Phytologist Foundation. 2025 The Author(s). New Phytologist © 2025 New Phytologist Foundation. Copyright © 2025 New Phytologist Trust |
Copyright_xml | – notice: 2025 The Author(s). © 2025 New Phytologist Foundation. – notice: 2025 The Author(s). New Phytologist © 2025 New Phytologist Foundation. – notice: Copyright © 2025 New Phytologist Trust |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/nph.70064 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA MEDLINE Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 1292 |
ExternalDocumentID | 40105301 10_1111_nph_70064 NPH70064 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 42322708; 42277297 – fundername: Heilongjiang Provincial Natural Science Foundation of China funderid: PL2024D015 – fundername: the Basic Scientific Research Operating Expenses of Colleges and Universities in Heilongjiang Province, China funderid: 2023‐KYYWF‐1448 – fundername: the Scientific Research Project of Ecological Environment Protection of Heilongjiang Provincial Department of Ecological Environment, China funderid: HST2022TR004 – fundername: National Natural Science Foundation of China grantid: 42322708 – fundername: the Scientific Research Project of Ecological Environment Protection of Heilongjiang Provincial Department of Ecological Environment, China grantid: HST2022TR004 – fundername: National Natural Science Foundation of China grantid: 42277297 – fundername: the Basic Scientific Research Operating Expenses of Colleges and Universities in Heilongjiang Province, China grantid: 2023-KYYWF-1448 – fundername: Heilongjiang Provincial Natural Science Foundation of China grantid: PL2024D015 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 123 1OC 29N 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAHQN AAISJ AAKGQ AAMNL AANLZ AAONW AASGY AASVR AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABLJU ABPLY ABPVW ABSQW ABTLG ABVKB ABXSQ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACQPF ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUPB AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGUYK AHBTC AHXOZ AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD F00 F01 F04 F5P FIJ G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LPU LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RCA RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WHG WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 XOL YNT YQT YXE ZCG ZZTAW ~02 ~IA ~KM ~WT AAMMB AAYXX ABGDZ ADXHL AEFGJ AEYWJ AGXDD AGYGG AIDQK AIDYY CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c3484-5eb45edd4e7ceb09b363de1938b326a103ffaf551504015f913f2db379aad1a03 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Fri Jul 11 17:29:35 EDT 2025 Sun Aug 24 03:53:02 EDT 2025 Thu Jul 24 06:41:19 EDT 2025 Fri Apr 11 01:32:00 EDT 2025 Sun Jul 06 05:08:52 EDT 2025 Thu Apr 10 11:07:59 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | arbuscular mycorrhizal fungi root exudation hypha secretions recruitment Pseudomonas putida KT2440 Funneliformis mosseae plant microbiome |
Language | English |
License | 2025 The Author(s). New Phytologist © 2025 New Phytologist Foundation. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3484-5eb45edd4e7ceb09b363de1938b326a103ffaf551504015f913f2db379aad1a03 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8265-0239 |
PMID | 40105301 |
PQID | 3188198430 |
PQPubID | 2026848 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_3206186184 proquest_miscellaneous_3178834617 proquest_journals_3188198430 pubmed_primary_40105301 crossref_primary_10_1111_nph_70064 wiley_primary_10_1111_nph_70064_NPH70064 |
PublicationCentury | 2000 |
PublicationDate | May 2025 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: May 2025 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2022; 375 2002; 15 2006; 72 2023; 4 2023; 9 2013; 64 1997; 276 2022; 23 2010; 185 2020; 14 2024; 188 2024; 342 2008; 148 2022; 64 2020; 11 2005; 29 2018; 9 2024; 917 2017; 30 2023; 25 2023; 66 2021; 118 2014; 15 2024; 20 2021; 230 2020; 44 2024; 279 2001; 11 2010; 2 2005; 33 2014; 12 2007; 68 2023; 71 2001; 413 2015; 6 2023; 13 2023; 14 2023; 11 2010 2023; 16 2023c; 14 2008 2022; 47 2024; 241 2008; 56 2016; 92 2024; 12 2023; 206 2011; 3 2022; 236 2022; 234 2016; 4 2021; 57 2021; 15 2021; 12 2020; 30 2022; 181 2018; 116 2020; 74 2023a; 238 2023; 271 2022; 7 2021; 337 2020; 194 2020; 117 2016; 210 2022; 59 2015 2022; 10 2022; 1 2020; 21 2023; 239 2013 2020; 65 2018; 12 2012; 8 2023b; 14 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 R Core Team (e_1_2_9_51_1) 2015 e_1_2_9_73_1 e_1_2_9_79_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 Leung HW (e_1_2_9_38_1) 2020; 14 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 Wang XL (e_1_2_9_63_1) 2020; 65 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 Jiao HW (e_1_2_9_29_1) 2022; 181 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 Schüssler A (e_1_2_9_56_1) 2010 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 Yang SD (e_1_2_9_72_1) 2023; 71 e_1_2_9_7_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 Smith SE (e_1_2_9_58_1) 2008 e_1_2_9_69_1 |
References_xml | – volume: 11 year: 2020 article-title: Biofertilizers as strategies to improve photosynthetic apparatus, growth, and drought stress tolerance in the date palm publication-title: Frontiers in Plant Science – volume: 14 start-page: 7758 year: 2023 article-title: Discovery and remodeling of as a microbial platform for efficient formic acid biorefinery publication-title: Nature Communications – volume: 238 start-page: 2634 year: 2023a end-page: 2650 article-title: Deciphering the mechanism of fungal pathogen‐induced disease‐suppressive soil publication-title: New Phytologist – volume: 33 start-page: D294 year: 2005 end-page: D296 article-title: The Ribosomal Database Project (RDP‐II): sequences and tools for high‐throughput rRNA analysis publication-title: Nucleic Acids Research – volume: 188 start-page: 109215 year: 2024 article-title: Microbial interactions for nutrient acquisition in soil: miners, scavengers, and carriers publication-title: Soil Biology and Biochemistry – volume: 194 start-page: 110374 year: 2020 article-title: Root exudates‐driven rhizosphere recruitment of the plant growth‐promoting rhizobacterium KLBMP 4941 and its growth‐promoting effect on the coastal halophyte under salt stress publication-title: Ecotoxicology and Environmental Safety – volume: 342 start-page: 112028 year: 2024 article-title: configures Arabidopsis root architecture through modulating the sensing systems for phosphate and iron acquisition publication-title: Plant Science – volume: 68 start-page: 401 year: 2007 end-page: 406 article-title: Camalexin publication-title: Phytochemistry – volume: 917 year: 2024 article-title: Above‐ and below‐ground feedback loop of maize is jointly enhanced by plant growth‐promoting rhizobacteria and arbuscular mycorrhizal fungi in drier soil publication-title: Science of the Total Environment – volume: 181 year: 2022 article-title: An improved chemotaxis assay for the rapid identification of rhizobacterial chemoattractants in root exudates publication-title: Journal of Visualized Experiments – volume: 12 start-page: 263 year: 2014 end-page: 273 article-title: Explaining microbial genomic diversity in light of evolutionary ecology publication-title: Nature Reviews Microbiology – volume: 1 year: 2022 article-title: Biochar stimulates tomato roots to recruit a bacterial assemblage contributing to disease resistance against wilt publication-title: iMeta – volume: 3 start-page: 180 year: 2011 end-page: 185 article-title: 2 publication-title: Wiley Interdisciplinary Reviews: Computational Statistics – volume: 29 start-page: 795 year: 2005 end-page: 811 article-title: Living in a fungal world: impact of fungi on soil bacterial niche development publication-title: FEMS Microbiology Reviews – volume: 12 start-page: 3829 year: 2021 article-title: Rapid evolution of bacterial mutualism in the plant rhizosphere publication-title: Nature Communications – volume: 12 start-page: 1425 year: 2021 article-title: Global profiling of distinct cysteine redox forms reveals wide‐ranging redox regulation in publication-title: Nature Communications – volume: 71 year: 2023 article-title: Emerging pathways for engineering the rhizosphere microbiome for optimal plant health publication-title: Journal of Agricultural and Food Chemistry – volume: 413 start-page: 297 year: 2001 end-page: 299 article-title: An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material publication-title: Nature – volume: 23 start-page: 1694 year: 2022 article-title: Bacterial inoculant and sucrose amendments improve the growth of L. by reprograming its metabolite composition and altering its soil microbial community publication-title: International Journal of Molecular Sciences – volume: 66 start-page: 1728 year: 2023 end-page: 1741 article-title: Growth substrates alter aboveground plant microbial and metabolic properties thereby influencing insect herbivore performance publication-title: Science China Life Sciences – volume: 11 year: 2020 article-title: A bacterial endophyte exploits chemotropism of a fungal pathogen for plant colonization publication-title: Nature Communications – volume: 234 start-page: 1914 year: 2022 end-page: 1918 article-title: Ecosystem consequences of introducing plant growth promoting rhizobacteria to managed systems and potential legacy effects publication-title: New Phytologist – volume: 210 start-page: 1022 year: 2016 end-page: 1032 article-title: Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate‐solubilizing bacterium publication-title: New Phytologist – volume: 236 start-page: 210 year: 2022 end-page: 221 article-title: Routes to roots: direct evidence of water transport by arbuscular mycorrhizal fungi to host plants publication-title: New Phytologist – volume: 279 year: 2024 article-title: Harnessing root exudates for plant microbiome engineering and stress resistance in plants publication-title: Microbiological Research – volume: 276 start-page: 734 year: 1997 end-page: 740 article-title: A molecular view of microbial diversity and the biosphere publication-title: Science – year: 2008 – volume: 44 start-page: 613 year: 2020 end-page: 628 article-title: Root exudates drive soil‐microbe‐nutrient feedbacks in response to plant growth publication-title: Plant, Cell & Environment – volume: 11 start-page: 45 year: 2023 article-title: Mycorrhiza‐mediated recruitment of complete denitrifying reduces N O emissions from soil publication-title: Microbiome – volume: 6 start-page: 707 year: 2015 article-title: Meta‐analysis approach for assessing the diversity and specificity of belowground root and microbial volatiles publication-title: Frontiers in Plant Science – volume: 9 year: 2023 article-title: Interactive effects of and salicylic acid for mitigating drought tolerance in canola ( L.) publication-title: Heliyon – volume: 30 start-page: 53 year: 2017 article-title: Identification of root‐secreted compounds involved in the communication between cucumber, the beneficial , and the soil‐borne pathogen publication-title: Molecular Plant–Microbe Interactions – volume: 271 year: 2023 article-title: Can arbuscular mycorrhizal fungi and rhizobacteria facilitate P uptake in maize plants under water stress? publication-title: Microbiological Research – volume: 10 start-page: 1 year: 2022 end-page: 15 article-title: Specific metabolites drive the deterministic assembly of diseased rhizosphere microbiome through weakening microbial degradation of autotoxin publication-title: Microbiome – volume: 116 start-page: 419 year: 2018 end-page: 430 article-title: Alive and kicking: why dormant soil microrganisms matter publication-title: Soil Biology and Biochemistry – volume: 8 start-page: 26 year: 2012 end-page: 35 article-title: Microbial metabolic exchange the chemotype to phenotype link publication-title: Nature Chemical Biology – volume: 7 start-page: 434 year: 2022 end-page: 450 article-title: Cysteine dependence of is a potential therapeutic target for vaginal microbiota modulation publication-title: Nature Microbiology – volume: 4 year: 2023 article-title: Comparative oxidation proteomics analyses suggest redox regulation of cytosolic translation in rice leaves upon infection publication-title: Plant Communications – volume: 25 start-page: 867 year: 2023 end-page: 879 article-title: Hyphosphere interactions between and promote carbon–phosphorus exchange at the peri‐arbuscular space in publication-title: Environmental Microbiology – year: 2015 – volume: 56 start-page: 625 year: 2008 end-page: 632 article-title: Assessment of the role of chemotaxis and biofilm formation as requirements for colonization of roots and seeds of soybean plants by BNM339 publication-title: Current Microbiology – volume: 72 start-page: 5069 year: 2006 end-page: 5072 article-title: Greengenes, a chimera‐checked 16S rRNA gene database and workbench compatible with ARB publication-title: Applied and Environmental Microbiology – volume: 12 start-page: 30 year: 2024 article-title: A tripartite bacterial–fungal–plant symbiosis in the mycorrhiza‐shaped microbiome drives plant growth and mycorrhization publication-title: Microbiome – volume: 21 start-page: 8740 year: 2020 article-title: Genome mining and evaluation of the biocontrol potential of BRZ63, a new endophyte of oilseed rape ( L.) against fungal pathogens publication-title: International Journal of Molecular Sciences – volume: 64 start-page: 1339 year: 2022 end-page: 1351 article-title: A feedback regulation between ARF7‐mediated auxin signaling and auxin homeostasis involving MES17 affects plant gravitropism publication-title: Journal of Integrative Plant Biology – volume: 375 start-page: 1 year: 2022 end-page: 10 article-title: Soil microbiota as game‐changers in restoration of degraded lands publication-title: Science – volume: 4 year: 2016 article-title: V : a versatile open source tool for metagenomics publication-title: PeerJ – volume: 15 start-page: 1173 year: 2002 end-page: 1180 article-title: Flagella‐driven chemotaxis towards exudate components is an important trait for tomato root colonization by publication-title: Molecular Plant–Microbe Interactions – volume: 14 year: 2020 article-title: Risk assessment with gut microbiome and metabolite markers in NAFLD development publication-title: Science Translational Medicine – volume: 64 start-page: 807 year: 2013 end-page: 838 article-title: Structure and functions of the bacterial microbiota of plants publication-title: Annual Review of Plant Biology – volume: 11 start-page: 3 year: 2001 end-page: 42 article-title: Water relations, drought and vesicular‐arbuscular mycorrhizal symbiosis publication-title: Mycorrhiza – volume: 118 year: 2021 article-title: Coordinated bacterial and plant sulfur metabolism in sp. SA187‐induced plant salt stress tolerance publication-title: Proceedings of the National Academy of Sciences, USA – volume: 2 start-page: 381 year: 2010 end-page: 388 article-title: KT2440 causes induced systemic resistance and changes in Arabidopsis root exudation publication-title: Environmental Microbiology Reports – volume: 236 start-page: 1988 year: 2022 end-page: 1998 article-title: Anthocyanin pigmentation as a quantitative visual marker for arbuscular mycorrhizal fungal colonization of roots publication-title: New Phytologist – volume: 65 start-page: 983 year: 2020 end-page: 986 article-title: An amplification‐selection model for quantified rhizosphere microbiota assembly publication-title: Scientific Bulletin – volume: 14 start-page: 713 year: 2023b end-page: 725 article-title: The best practice for microbiome analysis using R publication-title: Protein & Cell – volume: 10 start-page: 36 year: 2022 article-title: Long‐term effect of epigenetic modification in plant–microbe interactions: modification of DNA methylation induced by plant growth‐promoting bacteria mediates promotion process publication-title: Microbiome – volume: 230 start-page: 304 year: 2021 end-page: 315 article-title: Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae publication-title: New Phytologist – volume: 239 start-page: 752 year: 2023 end-page: 765 article-title: Home‐based microbial solution to boost crop growth in low‐fertility soil publication-title: New Phytologist – volume: 241 start-page: 2207 year: 2024 end-page: 2222 article-title: The receptor kinase RiSho1 in regulates arbuscule development and drought tolerance during arbuscular mycorrhizal symbiosis publication-title: New Phytologist – volume: 59 start-page: 17 year: 2022 end-page: 34 article-title: Hyphosphere microbiome of arbuscular mycorrhizal fungi: a realm of unknowns publication-title: Biology and Fertility of Soils – volume: 9 start-page: 2738 year: 2018 article-title: Root exudate metabolites drive plant–soil feedbacks on growth and defense by shaping the rhizosphere microbiota publication-title: Nature Communications – year: 2010 – volume: 47 start-page: 839 year: 2022 end-page: 850 article-title: News about amino acid metabolism in plant–microbe interactions publication-title: Trends in Biochemical Sciences – volume: 12 start-page: 2339 year: 2018 end-page: 2351 article-title: Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium publication-title: The ISME Journal – volume: 206 start-page: 108245 year: 2023 article-title: High red/far‐red ratio promotes root colonization of A21‐4 in tomato by root exudates‐stimulated chemotaxis and biofilm formation publication-title: Plant Physiology and Biochemistry – volume: 57 start-page: 827 year: 2021 end-page: 836 article-title: Competition for S‐containing amino acids between rhizosphere microorganisms and plant roots: the role of cysteine in plant S acquisition publication-title: Biology and Fertility of Soils – volume: 74 start-page: 267 year: 2020 end-page: 290 article-title: Chemical mediators at the bacterial‐fungal interface publication-title: Annual Review of Microbiology – volume: 14 start-page: 2936 year: 2020 end-page: 2950 article-title: Predicting disease occurrence with high accuracy based on soil macroecological patterns of wilt publication-title: ISME Journal – volume: 30 start-page: R1176 year: 2020 end-page: R1188 article-title: Trophic interactions and the drivers of microbial community assembly publication-title: Current Biology – volume: 185 start-page: 543 year: 2010 end-page: 553 article-title: Architecture of the wood‐wide web: spp. genets link multiple Douglas‐fir cohorts publication-title: New Phytologist – volume: 15 start-page: 1 year: 2014 end-page: 21 article-title: Moderated estimation of fold change and dispersion for RNA‐seq data with DES 2 publication-title: Genome Biology – volume: 13 year: 2023 article-title: Certain tomato root exudates induced by NRCB010 enhance its rhizosphere colonization capability publication-title: Metabolites – volume: 15 start-page: 397 year: 2021 end-page: 408 article-title: Achieving similar root microbiota composition in neighbouring plants through airborne signalling publication-title: The ISME Journal – volume: 117 start-page: 31500 year: 2020 end-page: 31509 article-title: The Arabidopsis NRT1/PTR FAMILY protein NPF7.3/NRT1.5 is an indole‐3‐butyric acid transporter involved in root gravitropism publication-title: Proceedings of the National Academy of Sciences, USA – volume: 148 start-page: 1547 year: 2008 end-page: 1556 article-title: Root‐secreted malic acid recruits beneficial soil bacteria publication-title: Plant Physiology – volume: 16 start-page: 849 year: 2023 end-page: 864 article-title: Interspecific plant interaction via root exudates structures the disease suppressiveness of rhizosphere microbiomes publication-title: Molecular Plant – volume: 20 start-page: 473 year: 2024 end-page: 483 article-title: Volatile methyl jasmonate from roots triggers host‐beneficial soil microbiome biofilms publication-title: Nature Chemical Biology – volume: 14 start-page: 4497 year: 2023c article-title: Tapping the rhizosphere metabolites for the prebiotic control of soil‐borne bacterial wilt disease publication-title: Nature Communications – volume: 92 year: 2016 article-title: Bacteria in decomposing wood and their interactions with wood‐decay fungi publication-title: FEMS Microbiology Ecology – volume: 337 start-page: 127097 year: 2021 article-title: Evaluation of humic acid conversion during composting under amoxicillin stress: emphasizes the driving role of core microbial communities publication-title: Bioresource Technology – year: 2013 – ident: e_1_2_9_26_1 doi: 10.1111/nph.18010 – ident: e_1_2_9_16_1 doi: 10.1016/j.femsre.2004.11.005 – ident: e_1_2_9_41_1 doi: 10.1094/MPMI-07-16-0131-R – ident: e_1_2_9_55_1 doi: 10.1146/annurev-micro-012420-081224 – ident: e_1_2_9_32_1 doi: 10.1093/femsec/fiw179 – volume: 14 year: 2020 ident: e_1_2_9_38_1 article-title: Risk assessment with gut microbiome and metabolite markers in NAFLD development publication-title: Science Translational Medicine doi: 10.1126/scitranslmed.abk0855 – volume: 181 year: 2022 ident: e_1_2_9_29_1 article-title: An improved chemotaxis assay for the rapid identification of rhizobacterial chemoattractants in root exudates publication-title: Journal of Visualized Experiments – ident: e_1_2_9_68_1 doi: 10.1038/s41467-023-40184-2 – ident: e_1_2_9_11_1 doi: 10.1016/j.xplc.2023.100550 – ident: e_1_2_9_74_1 doi: 10.1016/j.biortech.2021.125483 – ident: e_1_2_9_66_1 doi: 10.1111/nph.18886 – ident: e_1_2_9_3_1 doi: 10.1073/pnas.2107417118 – ident: e_1_2_9_28_1 doi: 10.1111/nph.18943 – ident: e_1_2_9_5_1 doi: 10.1007/s005720100097 – ident: e_1_2_9_47_1 – ident: e_1_2_9_23_1 doi: 10.1016/j.plaphy.2023.108245 – ident: e_1_2_9_22_1 doi: 10.1016/j.cub.2020.08.007 – ident: e_1_2_9_13_1 doi: 10.1126/science.abe0725 – ident: e_1_2_9_46_1 doi: 10.1016/j.tibs.2022.07.001 – ident: e_1_2_9_2_1 doi: 10.1016/j.micres.2023.127564 – ident: e_1_2_9_80_1 doi: 10.1038/s41396-018-0171-4 – ident: e_1_2_9_10_1 doi: 10.1186/s40168-022-01236-9 – ident: e_1_2_9_40_1 doi: 10.1186/s40168-023-01466-5 – ident: e_1_2_9_76_1 doi: 10.1038/s41396-020-0720-5 – ident: e_1_2_9_37_1 doi: 10.1111/nph.18504 – ident: e_1_2_9_69_1 doi: 10.1186/s40168-022-01375-z – ident: e_1_2_9_34_1 doi: 10.1016/j.scitotenv.2024.170417 – ident: e_1_2_9_50_1 doi: 10.1038/nchembio.739 – ident: e_1_2_9_30_1 doi: 10.1002/imt2.37 – ident: e_1_2_9_79_1 doi: 10.3390/metabo13050664 – ident: e_1_2_9_4_1 doi: 10.3389/fpls.2020.516818 – ident: e_1_2_9_70_1 doi: 10.1002/wics.147 – ident: e_1_2_9_27_1 doi: 10.1111/nph.17081 – ident: e_1_2_9_54_1 doi: 10.3389/fpls.2015.00707 – volume: 71 year: 2023 ident: e_1_2_9_72_1 article-title: Emerging pathways for engineering the rhizosphere microbiome for optimal plant health publication-title: Journal of Agricultural and Food Chemistry – ident: e_1_2_9_36_1 doi: 10.1038/s41589-023-01462-8 – ident: e_1_2_9_18_1 doi: 10.1111/1462-2920.16333 – ident: e_1_2_9_25_1 doi: 10.1038/s41467-018-05122-7 – ident: e_1_2_9_82_1 doi: 10.1111/pce.13928 – ident: e_1_2_9_42_1 doi: 10.1186/s13059-014-0550-8 – ident: e_1_2_9_43_1 doi: 10.1007/s00374-021-01572-2 – ident: e_1_2_9_9_1 doi: 10.1016/j.soilbio.2023.109215 – ident: e_1_2_9_65_1 doi: 10.1094/MPMI.2002.15.11.1173 – ident: e_1_2_9_83_1 doi: 10.1016/j.molp.2023.03.009 – ident: e_1_2_9_77_1 doi: 10.1186/s40168-024-01776-2 – volume-title: R: a language and environment for statistical computing year: 2015 ident: e_1_2_9_51_1 – ident: e_1_2_9_71_1 doi: 10.1016/j.ecoenv.2020.110374 – volume-title: Mycorrhizal symbiosis, 3rd edn year: 2008 ident: e_1_2_9_58_1 – ident: e_1_2_9_31_1 doi: 10.1016/j.soilbio.2017.10.022 – volume: 65 start-page: 983 year: 2020 ident: e_1_2_9_63_1 article-title: An amplification‐selection model for quantified rhizosphere microbiota assembly publication-title: Scientific Bulletin – ident: e_1_2_9_48_1 doi: 10.1126/science.276.5313.734 – ident: e_1_2_9_57_1 doi: 10.1016/j.micres.2023.127350 – ident: e_1_2_9_44_1 doi: 10.1111/j.1758-2229.2009.00091.x – ident: e_1_2_9_81_1 doi: 10.1111/nph.13838 – ident: e_1_2_9_6_1 doi: 10.1111/j.1469-8137.2009.03069.x – ident: e_1_2_9_67_1 doi: 10.1093/procel/pwad024 – ident: e_1_2_9_52_1 doi: 10.7717/peerj.2584 – ident: e_1_2_9_62_1 doi: 10.1111/nph.19677 – ident: e_1_2_9_53_1 doi: 10.1104/pp.108.127613 – ident: e_1_2_9_17_1 doi: 10.1128/AEM.03006-05 – ident: e_1_2_9_15_1 doi: 10.1038/nrmicro3218 – ident: e_1_2_9_59_1 doi: 10.1016/j.heliyon.2023.e14193 – ident: e_1_2_9_64_1 doi: 10.1073/pnas.2013305117 – ident: e_1_2_9_8_1 doi: 10.1146/annurev-arplant-050312-120106 – ident: e_1_2_9_12_1 doi: 10.3390/ijms21228740 – ident: e_1_2_9_73_1 doi: 10.1007/s00284-008-9137-5 – ident: e_1_2_9_19_1 doi: 10.1016/j.plantsci.2024.112028 – ident: e_1_2_9_20_1 doi: 10.1007/s00374-022-01683-4 – ident: e_1_2_9_14_1 doi: 10.1093/nar/gki038 – ident: e_1_2_9_61_1 doi: 10.3390/ijms23031694 – ident: e_1_2_9_39_1 doi: 10.1038/s41467-021-24005-y – ident: e_1_2_9_60_1 doi: 10.1038/s41467-023-43631-2 – ident: e_1_2_9_7_1 doi: 10.1038/s41564-022-01070-7 – ident: e_1_2_9_24_1 doi: 10.1038/35095041 – ident: e_1_2_9_45_1 doi: 10.1038/s41467-021-21686-3 – volume-title: The Glomeromycota: a species list with new families and new genera year: 2010 ident: e_1_2_9_56_1 – ident: e_1_2_9_78_1 doi: 10.1111/jipb.13268 – ident: e_1_2_9_33_1 doi: 10.1111/nph.18281 – ident: e_1_2_9_35_1 doi: 10.1038/s41396-020-00759-z – ident: e_1_2_9_49_1 doi: 10.1038/s41467-020-18994-5 – ident: e_1_2_9_21_1 doi: 10.1016/j.phytochem.2006.12.005 – ident: e_1_2_9_75_1 doi: 10.1007/s11427-022-2279-5 |
SSID | ssj0009562 |
Score | 2.4874246 |
Snippet | Summary
The assembly of the rhizosphere microbiome determines its functionality for plant fitness. Although the interactions between arbuscular mycorrhizal... The assembly of the rhizosphere microbiome determines its functionality for plant fitness. Although the interactions between arbuscular mycorrhizal fungi (AMF)... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1276 |
SubjectTerms | Acetic acid arbuscular mycorrhizal fungi Arbuscular mycorrhizas Assembly carbon Carbon sources cysteine Disease resistance Division of labor Fungi Funneliformis mosseae Glomeromycota - physiology Glomus mosseae Glycine max Glycine max - microbiology Host plants hypha secretions Indoleacetic acid Indoleacetic Acids - metabolism Labor microbial communities microbiome Microbiomes Microorganisms Molecules Mycorrhizae - drug effects Mycorrhizae - physiology Plant bacterial diseases Plant diseases Plant growth plant growth-promoting rhizobacteria plant microbiome Plant Roots - microbiology Plants Pseudomonas putida Pseudomonas putida - drug effects Pseudomonas putida - physiology Pseudomonas putida KT2440 recruitment Rhizosphere root exudation secretion Soybeans Symbionts Symbiosis Tryptophan Tryptophan - metabolism vesicular arbuscular mycorrhizae |
Title | Arbuscular mycorrhizal fungi build a bridge for soybeans to recruit Pseudomonas putida |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.70064 https://www.ncbi.nlm.nih.gov/pubmed/40105301 https://www.proquest.com/docview/3188198430 https://www.proquest.com/docview/3178834617 https://www.proquest.com/docview/3206186184 |
Volume | 246 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB_K4YMvtlarqaes4kNfciTZTTbBp1Msh2AppZV7KIT9mNhDTI5L8nD9651NLsfVUpG-BTKByc7Xb3ZnZwA-RmhlkEXWj7nhvuBC-Fqk1kcjIssRTdFtDXw_S2ZX4ts8nu_Bp-EuTN8fYrvh5iyj89fOwJWud4y8XN5MpIuo5H9drZYDRBfRTsPdJBo6MCcimW-6Crkqnu2Xd2PRPYB5F692Aed0H64HVvs6k1-TttETc_tXF8dH_ssBPNsAUTbtNec57GF5CE8-VwQW1y_gx5RWu69RZb_XlKGubha3RE5h8OeCaTdLmynW3_ZihHtZXa01UthjTcXIia7aRcPOa2xtRXquarYkBbfqJVydfr38MvM3Ixh8w0Uq_Bi1iNFagdKgDjLNE26RQF-qCfepMOBFoQpCXTE5gzAuspAXkdVcZkrZUAX8CEZlVeJrYDJUVmquUHIrssRmxgRxqjBLTCKljT34MAgjX_adNvIhQ6H1ybv18WA8iCnfGFudk1siXJMKHnjwfvuazMSdfagSq9bRUK7PBeG1f9BEgZseQDmvB696FdhyItwkUXKGHpx0gnyYxfzsfNY9HP8_6Rt4Grm5wl0h5RhGzarFtwR2Gv2u0-o_Nb_6nA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VFoleSnmUprRgEAcuWSWxEycSlwKtFmhXFWrRXlDkx4Suqiar3eSw_fWMk82qBYEQt0iZSI49j2_s8TcAbyK0Msgi68fccF9wIXwtUuujEZHliKZotwZOR8nwQnwex-M1eNffhen4IVYbbs4yWn_tDNxtSN-y8nJ6OZAupN6DDdfR2zHnf_wa3aLcTaKegzkRyXjJK-TqeFaf3o1Gv0HMu4i1DTnHD-F7P9iu0uRq0NR6YG5-4XH837_Zhq0lFmWHnfI8gjUsH8P99xXhxcUT-HZIE96VqbLrBSWps8vJDYlTJPwxYdq102aKdRe-GEFfNq8WGinysbpi5EdnzaRmZ3NsbEWqruZsSjpu1VO4OD46_zD0l10YfMNFKvwYtYjRWoHSoA4yzRNukXBfqgn6qTDgRaEKAl4x-YMwLrKQF5HVXGZK2VAFfAfWy6rEXWAyVFZqrlByK7LEZsYEcaowS0wipY09eN2vRj7tyDbyPkmh-cnb-fFgv1-nfGlv85w8E0GbVPDAg1er12Qp7vhDlVg1TobSfS4Isv1FJgpcAwFKez141unAaiTCNRMlf-jB23Yl_zzEfHQ2bB_2_l30JTwYnp-e5CefRl-ew2bk2gy3dZX7sF7PGjwg7FPrF62K_wTaTP64 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9RAEC7WVcSL79Xoqq148JIhSXe6EzytrsP4GgZxZQ5C6EfFHcRkmEkOs7_e6mQy7CqKeAukApWu11fd1VUAzxN0KsoTF6bc8lBwIUIjMheiFYnjiLbstgY-TuXkRLybp_M9eDnchen7Q-w23LxldP7aG_jSleeMvFqejpSPqJfgspBR7uc2HH9KznXclcnQglkKOd-2FfJlPLtPLwaj3xDmRcDaRZzxDfg68NoXmnwftY0Z2bNf2jj-58_chOtbJMqOetW5BXtY3YYrr2pCi5s78OWIlrsvUmU_NpSirk4XZ0ROcfDbghk_TJtp1l_3YgR82breGKS4x5qakRddtYuGzdbYupoUXa_ZkjTc6btwMn7z-fUk3M5gCC0XmQhTNCJF5wQqiybKDZfcIaG-zBDw03HEy1KXBLtS8gZxWuYxLxNnuMq1drGO-AHsV3WF94GpWDtluEbFncily62N0kxjLq1UyqUBPBuEUSz7VhvFkKLQ-hTd-gRwOIip2FrbuiC_RMAmEzwK4OnuNdmJP_zQFdatp6FknwsCbH-hSSI_PoCS3gDu9Sqw40T4UaLkDQN40QnyzywW09mke3jw76RP4OrseFx8eDt9_xCuJX7GcFdUeQj7zarFRwR8GvO4U_Cf5NP9Zw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arbuscular+mycorrhizal+fungi+build+a+bridge+for+soybeans+to+recruit+Pseudomonas+putida&rft.jtitle=The+New+phytologist&rft.au=Qiu%2C+Wei&rft.au=Kang%2C+Jie&rft.au=Ye%2C+Zeming&rft.au=Yang%2C+Shengdie&rft.date=2025-05-01&rft.eissn=1469-8137&rft.volume=246&rft.issue=3&rft.spage=1276&rft_id=info:doi/10.1111%2Fnph.70064&rft_id=info%3Apmid%2F40105301&rft.externalDocID=40105301 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |