Estimating Dynamic Connectivity States in fMRI Using Regime-Switching Factor Models

We consider the challenges in estimating the state-related changes in brain connectivity networks with a large number of nodes. Existing studies use the sliding-window analysis or time-varying coefficient models, which are unable to capture both smooth and abrupt changes simultaneously, and rely on...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 37; no. 4; pp. 1011 - 1023
Main Authors Chee-Ming Ting, Ombao, Hernando, Samdin, S. Balqis, Salleh, Sh-Hussain
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We consider the challenges in estimating the state-related changes in brain connectivity networks with a large number of nodes. Existing studies use the sliding-window analysis or time-varying coefficient models, which are unable to capture both smooth and abrupt changes simultaneously, and rely on ad-hoc approaches to the high-dimensional estimation. To overcome these limitations, we propose a Markov-switching dynamic factor model, which allows the dynamic connectivity states in functional magnetic resonance imaging (fMRI) data to be driven by lower-dimensional latent factors. We specify a regime-switching vector autoregressive (SVAR) factor process to quantity the time-varying directed connectivity. The model enables a reliable, data-adaptive estimation of change-points of connectivity regimes and the massive dependencies associated with each regime. We develop a three-step estimation procedure: 1) extracting the factors using principal component analysis, 2) identifying connectivity regimes in a low-dimensional subspace based on the factor-based SVAR model, and 3) constructing high-dimensional state connectivity metrics based on the subspace estimates. Simulation results show that our estimator outperforms K-means clustering of time-windowed coefficients, providing more accurate estimate of time-evolving connectivity. It achieves percentage of reduction in mean squared error by 60% when the network dimension is comparable to the sample size. When applied to the resting-state fMRI data, our method successfully identifies modular organization in the resting-state networks in consistency with other studies. It further reveals changes in brain states with variations across subjects and distinct large-scale directed connectivity patterns across states.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0278-0062
1558-254X
1558-254X
DOI:10.1109/TMI.2017.2780185