TPA: A Two-Phase Approach Using Simulated Annealing for the Optimization of Census Taker Routes in Mexico

Censuses in Mexico are taken by the National Institute of Statistics and Geography (INEGI). In this paper a Two-Phase Approach (TPA) to optimize the routes of INEGI’s census takers is presented. For each pollster, in the first phase, a route is produced by means of the Simulated Annealing (SA) heuri...

Full description

Saved in:
Bibliographic Details
Published inMathematical problems in engineering Vol. 2015; no. 2015; pp. 1 - 9
Main Authors Gaona, Silvia, Romero, David
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 01.01.2015
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Censuses in Mexico are taken by the National Institute of Statistics and Geography (INEGI). In this paper a Two-Phase Approach (TPA) to optimize the routes of INEGI’s census takers is presented. For each pollster, in the first phase, a route is produced by means of the Simulated Annealing (SA) heuristic, which attempts to minimize the travel distance subject to particular constraints. Whenever the route is unrealizable, it is made realizable in the second phase by constructing a visibility graph for each obstacle and applying Dijkstra’s algorithm to determine the shortest path in this graph. A tuning methodology based on the irace package was used to determine the parameter values for TPA on a subset of 150 instances provided by INEGI. The practical effectiveness of TPA was assessed on another subset of 1962 instances, comparing its performance with that of the in-use heuristic (INEGIH). The results show that TPA clearly outperforms INEGIH. The average improvement is of 47.11%.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1024-123X
1563-5147
DOI:10.1155/2015/648035