X-ray polarization signature of warm absorber winds in AGN
Accretion onto a supermassive black hole in Active Galactic Nuclei (AGN), Seyfert galaxies and quasars is often accompanied by winds which are powerful enough to affect the AGN mass budget, and whose observational appearance bears an imprint of processes which are happening within the central parsec...
Saved in:
Published in | Astrophysics and space science Vol. 336; no. 1; pp. 245 - 250 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.11.2011
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Accretion onto a supermassive black hole in Active Galactic Nuclei (AGN), Seyfert galaxies and quasars is often accompanied by winds which are powerful enough to affect the AGN mass budget, and whose observational appearance bears an imprint of processes which are happening within the central parsec around the black hole (BH). One example of such a wind is the partially ionized gas responsible for X-ray and UV absorption (‘warm absorbers’). Here we perform 3D calculations of transfer of polarized light in 0.1–10 keV range from hydrodynamical model of warm absorber flow and show that such gas will have a distinct signature when viewed in polarized X-rays and it will be detectable by future dedicated X-ray polarimetry space missions, such as the NASA Gravity and Extreme Magnetism SMEX, GEMS. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0004-640X 1572-946X |
DOI: | 10.1007/s10509-011-0656-3 |