Downstream-Conditioned Maximum Entropy Method for Exit Boundary Conditions in the Lattice Boltzmann Method

A method for modeling outflow boundary conditions in the lattice Boltzmann method (LBM) based on the maximization of the local entropy is presented. The maximization procedure is constrained by macroscopic values and downstream components. The method is applied to fully developed boundary conditions...

Full description

Saved in:
Bibliographic Details
Published inMathematical problems in engineering Vol. 2015; no. 2015; pp. 1 - 12
Main Authors Dottori, Javier A., Clausse, Alejandro, Boroni, Gustavo A.
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 01.01.2015
Hindawi Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A method for modeling outflow boundary conditions in the lattice Boltzmann method (LBM) based on the maximization of the local entropy is presented. The maximization procedure is constrained by macroscopic values and downstream components. The method is applied to fully developed boundary conditions of the Navier-Stokes equations in rectangular channels. Comparisons are made with other alternative methods. In addition, the new downstream-conditioned entropy is studied and it was found that there is a correlation with the velocity gradient during the flow development.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1024-123X
1563-5147
DOI:10.1155/2015/159418