Inhibition of erythroid differentiation and induction of megakaryocytic differentiation by thrombopoietin are regulated by two different mechanisms in TPO-dependent UT-7/c-mpl and TF-1/c-mpl cell lines

Thrombopoietin (TPO) regulates megakaryocytic (MK) maturation and platelet production. Molecular and cellular mechanisms of the TPO-induced MK differentiation are not totally understood. In order to develop cellular models to study these mechanisms, we introduced c-mpl into UT-7 and TF-1 cells by me...

Full description

Saved in:
Bibliographic Details
Published inLeukemia Vol. 12; no. 9; pp. 1355 - 1366
Main Authors GONCALVES, F, LACOUT, C, FEGER, F, COHEN-SOLAL, K, GUICHARD, J, CRAMER, E, VAINCHENKER, W, DUMENIL, D
Format Journal Article
LanguageEnglish
Published London Nature Publishing 01.09.1998
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Thrombopoietin (TPO) regulates megakaryocytic (MK) maturation and platelet production. Molecular and cellular mechanisms of the TPO-induced MK differentiation are not totally understood. In order to develop cellular models to study these mechanisms, we introduced c-mpl into UT-7 and TF-1 cells by means of a retroviral vector and compared the effects of TPO on these two cell lines. UT-7 and TF-1 cell lines are two factor-dependent leukemic cell lines with an erythroid and MK phenotype. They proliferate in response to IL-3, GM-CSF and EPO, but not to TPO. The erythroid differentiation of both cell lines can be markedly increased by EPO. Several UT-7/c-mpl and TF-1/c-mpl cell clones which express different levels of the c-mpl protein (Mpl) were obtained and all became TPO-dependent for their proliferation. The UT-7/c-mpl clones, but not the TF-1/c-mpl clones, were capable of undergoing MK differentiation in response to TPO. This was demonstrated by the increase in MK markers (GPIIb, GPIIIa, GPIb alpha, GPIX and vWF), the appearance of cytoplasmic alpha-granules, intracellular membranes resembling demarcation membranes which were immunologically labeled with an GPIIb/IIIa anti-antibody, and a small percentage of polyploid cells (8N and 16N). In contrast, TPO inhibited the erythroid program of differentiation (glycophorin A, beta-globin and EPO receptor) as well as the differentiative activity of EPO in both UT-7/c-mpl and TF-1/c-mpl clones. It is noteworthy that the differentiative effect of EPO in TF-1/c-mpl cells was associated with an increase in GATA-1 transcripts which was totally suppressed by TPO. Overall the effects of TPO are the same as those of phorbol myristate acetate (PMA) which also induces MK differentiation and inhibits erythroid differentiation. These results suggest that: (1) Mpl expression is necessary but not sufficient for induction of MK differentiation; and (2) induction of Mk differentiation and inhibition of erythroid differentiation by TPO involve different signaling pathways; the pathway involved in the inhibition of erythroid differentiation might be related to a downregulation of GATA-1 expression in TF-1 cells.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0887-6924
1476-5551
DOI:10.1038/sj.leu.2401122