3-D Subject-Specific Shape and Density Estimation of the Lumbar Spine From a Single Anteroposterior DXA Image Including Assessment of Cortical and Trabecular Bone

Dual Energy X-ray Absorptiometry (DXA) is the standard exam for osteoporosis diagnosis and fracture risk evaluation at the spine. However, numerous patients with bone fragility are not diagnosed as such. In fact, standard analysis of DXA images does not differentiate between trabecular and cortical...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 37; no. 12; pp. 2651 - 2662
Main Authors Lopez Picazo, Mirella, Magallon Baro, Alba, Del Rio Barquero, Luis M, Di Gregorio, Silvana, Martelli, Yves, Romera, Jordi, Steghofer, Martin, Gonzalez Ballester, Miguel A., Humbert, Ludovic
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Dual Energy X-ray Absorptiometry (DXA) is the standard exam for osteoporosis diagnosis and fracture risk evaluation at the spine. However, numerous patients with bone fragility are not diagnosed as such. In fact, standard analysis of DXA images does not differentiate between trabecular and cortical bone; neither specifically assess of the bone density in the vertebral body, which is where most of the osteoporotic fractures occur. Quantitative computed tomography (QCT) is an alternative technique that overcomes limitations of DXA-based diagnosis. However, due to the high cost and radiation dose, QCT is not used for osteoporosis management. We propose a method that provides a 3-D subject-specific shape and density estimation of the lumbar spine from a single anteroposterior (AP) DXA image. A 3-D statistical shape and density model is built, using a training set of QCT scans, and registered onto the AP DXA image so that its projection matches it. Cortical and trabecular bone compartments are segmented using a model-based algorithm. Clinical measurements are performed at different bone compartments. Accuracy was evaluated by comparing DXA-derived to QCT-derived 3-D measurements for a validation set of 180 subjects. The shape accuracy was 1.51 mm at the total vertebra and 0.66 mm at the vertebral body. Correlation coefficients between DXA and QCT-derived measurements ranged from 0.81 to 0.97. The method proposed offers an insightful 3-D analysis of the lumbar spine, which could potentially improve osteoporosis and fracture risk assessment in patients who had an AP DXA scan of the lumbar spine without any additional examination.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0278-0062
1558-254X
1558-254X
DOI:10.1109/TMI.2018.2845909