Projection onto Epigraph Sets for Rapid Self-Tuning Compressed Sensing MRI
The compressed sensing (CS) framework leverages the sparsity of MR images to reconstruct from the undersampled acquisitions. CS reconstructions involve one or more regularization parameters that weigh sparsity in transform domains against fidelity to acquired data. While parameter selection is criti...
Saved in:
Published in | IEEE transactions on medical imaging Vol. 38; no. 7; pp. 1677 - 1689 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.07.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The compressed sensing (CS) framework leverages the sparsity of MR images to reconstruct from the undersampled acquisitions. CS reconstructions involve one or more regularization parameters that weigh sparsity in transform domains against fidelity to acquired data. While parameter selection is critical for reconstruction quality, the optimal parameters are subject and dataset specific. Thus, commonly practiced heuristic parameter selection generalizes poorly to independent datasets. Recent studies have proposed to tune parameters by estimating the risk of removing significant image coefficients. Line searches are performed across the parameter space to identify the parameter value that minimizes this risk. Although effective, these line searches yield prolonged reconstruction times. Here, we propose a new self-tuning CS method that uses computationally efficient projections onto epigraph sets of the <inline-formula> <tex-math notation="LaTeX">{\ell }_{{1}} </tex-math></inline-formula> and total-variation norms to simultaneously achieve parameter selection and regularization. In vivo demonstrations are provided for balanced steady-state free precession, time-of-flight, and T1-weighted imaging. The proposed method achieves an order of magnitude improvement in computational efficiency over line-search methods while maintaining near-optimal parameter selection. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0278-0062 1558-254X 1558-254X |
DOI: | 10.1109/TMI.2018.2885599 |