Revisiting Shadow Detection: A New Benchmark Dataset for Complex World

Shadow detection in general photos is a nontrivial problem, due to the complexity of the real world. Though recent shadow detectors have already achieved remarkable performance on various benchmark data, their performance is still limited for general real-world situations. In this work, we collected...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 30; pp. 1925 - 1934
Main Authors Hu, Xiaowei, Wang, Tianyu, Fu, Chi-Wing, Jiang, Yitong, Wang, Qiong, Heng, Pheng-Ann
Format Journal Article
LanguageEnglish
Published United States IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Shadow detection in general photos is a nontrivial problem, due to the complexity of the real world. Though recent shadow detectors have already achieved remarkable performance on various benchmark data, their performance is still limited for general real-world situations. In this work, we collected shadow images for multiple scenarios and compiled a new dataset of 10,500 shadow images, each with labeled ground-truth mask, for supporting shadow detection in the complex world. Our dataset covers a rich variety of scene categories, with diverse shadow sizes, locations, contrasts, and types. Further, we comprehensively analyze the complexity of the dataset, present a fast shadow detection network with a detail enhancement module to harvest shadow details, and demonstrate the effectiveness of our method to detect shadows in general situations.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2021.3049331