H atom transfer along an ammonia chain: tunneling and mode selectivity in 7-hydroxyquinoline.(NH3)3
Excitation of the 7-hydroxyquinoline(NH(3))(3) [7HQ(NH(3))(3)] cluster to the S(1) (1)pi pi(*) state results in an O-H-->NH(3) hydrogen atom transfer (HAT) reaction. In order to investigate the entrance channel, the vibronic S(1)<-->S(0) spectra of the 7HQ.(NH(3))(3) and the d(2)-7DQ.(ND(3)...
Saved in:
Published in | The Journal of chemical physics Vol. 121; no. 6; p. 2578 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
08.08.2004
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Summary: | Excitation of the 7-hydroxyquinoline(NH(3))(3) [7HQ(NH(3))(3)] cluster to the S(1) (1)pi pi(*) state results in an O-H-->NH(3) hydrogen atom transfer (HAT) reaction. In order to investigate the entrance channel, the vibronic S(1)<-->S(0) spectra of the 7HQ.(NH(3))(3) and the d(2)-7DQ.(ND(3))(3) clusters have been studied by resonant two-photon ionization, UV-UV depletion and fluorescence techniques, and by ab initio calculations for the ground and excited states. For both isotopomers, the low-frequency part of the S(1)<--S(0) spectra is dominated by ammonia-wire deformation and stretching vibrations. Excitation of overtones or combinations of these modes above a threshold of 200-250 cm(-1) for 7HQ.(NH(3))(3) accelerates the HAT reaction by an order of magnitude or more. The d(2)-7DQ.(ND(3))(3) cluster exhibits a more gradual threshold from 300 to 650 cm(-1). For both isotopomers, intermolecular vibrational states above the threshold exhibit faster HAT rates than the intramolecular vibrations. The reactivity, isotope effects, and mode selectivity are interpreted in terms of H atom tunneling through a barrier along the O-H-->NH(3) coordinate. The barrier results from a conical intersection of the optically excited (1)pi pi(*) state with an optically dark (1)pi sigma(*) state. Excitation of the ammonia-wire stretching modes decreases both the quinoline-O-H...NH(3) distance and the energetic separation between the (1)pi pi(*) and (1)pi sigma(*) states, thereby increasing the H atom tunneling rate. The intramolecular vibrations change the H bond distance and modulate the (1)pi pi(*)<-->(1)pi sigma(*) interaction to a much smaller extent. |
---|---|
ISSN: | 0021-9606 |
DOI: | 10.1063/1.1769371 |