Embedding Adversarial Learning for Vehicle Re-Identification

The high similarities of different real-world vehicles and great diversities of the acquisition views pose grand challenges to vehicle re-identification (ReID), which traditionally maps the vehicle images into a high-dimensional embedding space for distance optimization, vehicle discrimination, and...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 28; no. 8; pp. 3794 - 3807
Main Authors Lou, Yihang, Bai, Yan, Liu, Jun, Wang, Shiqi, Duan, Ling-Yu
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The high similarities of different real-world vehicles and great diversities of the acquisition views pose grand challenges to vehicle re-identification (ReID), which traditionally maps the vehicle images into a high-dimensional embedding space for distance optimization, vehicle discrimination, and identification. To improve the discriminative capability and robustness of the ReID algorithm, we propose a novel end-to-end embedding adversarial learning network (EALN) that is capable of generating samples localized in the embedding space. Instead of selecting abundant hard negatives from the training set, which is extremely difficult if not impossible, with our embedding adversarial learning scheme, the automatically generated hard negative samples in the specified embedding space can greatly improve the capability of the network for discriminating similar vehicles. Moreover, the more challenging cross-view vehicle ReID problem, which requires the ReID algorithm to be robust with different query views, can also benefit from such a scheme based on the artificially generated cross-view samples. We demonstrate the promise of EALN through extensive experiments and show the effectiveness of hard negative and cross-view generation in facilitating vehicle ReID based on the comparisons with the state-of-the-art schemes.
AbstractList The high similarities of different real-world vehicles and great diversities of the acquisition views pose grand challenges to vehicle re-identification (ReID), which traditionally maps the vehicle images into a high-dimensional embedding space for distance optimization, vehicle discrimination, and identification. To improve the discriminative capability and robustness of the ReID algorithm, we propose a novel end-to-end embedding adversarial learning network (EALN) that is capable of generating samples localized in the embedding space. Instead of selecting abundant hard negatives from the training set, which is extremely difficult if not impossible, with our embedding adversarial learning scheme, the automatically generated hard negative samples in the specified embedding space can greatly improve the capability of the network for discriminating similar vehicles. Moreover, the more challenging cross-view vehicle ReID problem, which requires the ReID algorithm to be robust with different query views, can also benefit from such a scheme based on the artificially generated cross-view samples. We demonstrate the promise of EALN through extensive experiments and show the effectiveness of hard negative and cross-view generation in facilitating vehicle ReID based on the comparisons with the state-of-the-art schemes.
The high similarities of different real-world vehicles and great diversities of the acquisition views pose grand challenges to vehicle re-identification (ReID), which traditionally maps the vehicle images into a high-dimensional embedding space for distance optimization, vehicle discrimination, and identification. To improve the discriminative capability and robustness of the ReID algorithm, we propose a novel end-to-end embedding adversarial learning network (EALN) that is capable of generating samples localized in the embedding space. Instead of selecting abundant hard negatives from the training set, which is extremely difficult if not impossible, with our embedding adversarial learning scheme, the automatically generated hard negative samples in the specified embedding space can greatly improve the capability of the network for discriminating similar vehicles. Moreover, the more challenging cross-view vehicle ReID problem, which requires the ReID algorithm to be robust with different query views, can also benefit from such a scheme based on the artificially generated cross-view samples. We demonstrate the promise of EALN through extensive experiments and show the effectiveness of hard negative and cross-view generation in facilitating vehicle ReID based on the comparisons with the state-of-the-art schemes.The high similarities of different real-world vehicles and great diversities of the acquisition views pose grand challenges to vehicle re-identification (ReID), which traditionally maps the vehicle images into a high-dimensional embedding space for distance optimization, vehicle discrimination, and identification. To improve the discriminative capability and robustness of the ReID algorithm, we propose a novel end-to-end embedding adversarial learning network (EALN) that is capable of generating samples localized in the embedding space. Instead of selecting abundant hard negatives from the training set, which is extremely difficult if not impossible, with our embedding adversarial learning scheme, the automatically generated hard negative samples in the specified embedding space can greatly improve the capability of the network for discriminating similar vehicles. Moreover, the more challenging cross-view vehicle ReID problem, which requires the ReID algorithm to be robust with different query views, can also benefit from such a scheme based on the artificially generated cross-view samples. We demonstrate the promise of EALN through extensive experiments and show the effectiveness of hard negative and cross-view generation in facilitating vehicle ReID based on the comparisons with the state-of-the-art schemes.
Author Duan, Ling-Yu
Wang, Shiqi
Bai, Yan
Liu, Jun
Lou, Yihang
Author_xml – sequence: 1
  givenname: Yihang
  surname: Lou
  fullname: Lou, Yihang
  email: yihanglou@pku.edu.cn
  organization: National Engineering Laboratory for Video Technology, Peking University, Beijing, China
– sequence: 2
  givenname: Yan
  surname: Bai
  fullname: Bai, Yan
  email: yanbai@pku.edu.cn
  organization: National Engineering Laboratory for Video Technology, Peking University, Beijing, China
– sequence: 3
  givenname: Jun
  orcidid: 0000-0002-4365-4165
  surname: Liu
  fullname: Liu, Jun
  email: jliu029@ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
– sequence: 4
  givenname: Shiqi
  orcidid: 0000-0002-3583-959X
  surname: Wang
  fullname: Wang, Shiqi
  email: shiqwang@cityu.edu.hk
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong
– sequence: 5
  givenname: Ling-Yu
  orcidid: 0000-0002-4491-2023
  surname: Duan
  fullname: Duan, Ling-Yu
  email: lingyu@pku.edu.cn
  organization: National Engineering Laboratory for Video Technology, Peking University, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30835224$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtLAzEQh4MoWh93QZCCFy9bJ8lmNwEvIj4KBUXUa8hmJ5qyj5rsCv73bm3twYOnGYbvNzN8-2S7aRsk5JjChFJQF8_TxwkDqiZMAaOUbZERVSlNAFK2PfQg8iSnqdoj-zHOAWgqaLZL9jhILhhLR-Typi6wLH3zNr4qPzFEE7ypxjM0oVkOXRvGr_jubYXjJ0ymJTadd96azrfNIdlxpop4tK4H5OX25vn6Ppk93E2vr2aJ5WneJVIUlhescOCMNRw5gi25LYanwaSWS2ROZakxUkjrpCoK44CVZW6NkopyfkDOV3sXof3oMXa69tFiVZkG2z5qRqVkFHIhBvTsDzpv-9AM32nGuMok5TIfqNM11Rc1lnoRfG3Cl_71MgCwAmxoYwzoNggFvVSvB_V6qV6v1Q-R7E_E-u5HUxeMr_4LnqyCHhE3d2QmuBSMfwOs0I7O
CODEN IIPRE4
CitedBy_id crossref_primary_10_1007_s11227_025_07012_4
crossref_primary_10_1007_s11042_023_14839_7
crossref_primary_10_1109_TIP_2020_2989100
crossref_primary_10_1109_TITS_2023_3277974
crossref_primary_10_1007_s12652_021_03400_9
crossref_primary_10_1007_s12559_023_10162_3
crossref_primary_10_1016_j_patcog_2023_109304
crossref_primary_10_1145_3447866
crossref_primary_10_1145_3578578
crossref_primary_10_1109_TIP_2020_2980130
crossref_primary_10_1007_s11760_024_03711_2
crossref_primary_10_1109_TETCI_2024_3372391
crossref_primary_10_14801_jkiit_2023_21_5_29
crossref_primary_10_1109_TITS_2023_3234644
crossref_primary_10_1016_j_neucom_2024_128745
crossref_primary_10_1007_s11042_020_09987_z
crossref_primary_10_1016_j_neunet_2023_10_032
crossref_primary_10_32604_cmc_2021_016560
crossref_primary_10_1109_TMM_2020_2966885
crossref_primary_10_32604_cmc_2021_021627
crossref_primary_10_1016_j_neucom_2021_07_082
crossref_primary_10_1109_TETCI_2021_3127906
crossref_primary_10_1007_s11432_021_3383_y
crossref_primary_10_1109_MMUL_2020_2999464
crossref_primary_10_1109_TITS_2023_3285758
crossref_primary_10_1007_s10489_022_03801_z
crossref_primary_10_1109_TITS_2023_3308138
crossref_primary_10_1016_j_patcog_2025_111453
crossref_primary_10_1109_TMM_2021_3104141
crossref_primary_10_1109_TMM_2022_3154102
crossref_primary_10_1049_ipr2_12582
crossref_primary_10_1109_JIOT_2024_3402071
crossref_primary_10_1109_TIP_2023_3326691
crossref_primary_10_1007_s13042_023_01993_5
crossref_primary_10_1371_journal_pone_0291047
crossref_primary_10_1007_s00530_023_01077_y
crossref_primary_10_1016_j_image_2023_116922
crossref_primary_10_1109_ACCESS_2020_3036185
crossref_primary_10_1109_TITS_2021_3130403
crossref_primary_10_1109_TVT_2023_3262983
crossref_primary_10_1007_s42979_024_03271_9
crossref_primary_10_1016_j_jvcir_2023_103937
crossref_primary_10_1145_3322122
crossref_primary_10_3390_math9243162
crossref_primary_10_1016_j_imavis_2024_104972
crossref_primary_10_1109_TITS_2022_3190959
crossref_primary_10_3390_electronics9071083
crossref_primary_10_1016_j_geits_2025_100269
crossref_primary_10_1016_j_trc_2022_103982
crossref_primary_10_1007_s10489_020_02171_8
crossref_primary_10_1186_s13634_021_00767_x
crossref_primary_10_1109_TPAMI_2021_3099253
crossref_primary_10_3390_e25040594
crossref_primary_10_1109_TCSVT_2023_3298788
crossref_primary_10_1109_TNNLS_2020_3029299
crossref_primary_10_3390_s23115152
crossref_primary_10_1109_TITS_2020_3024824
crossref_primary_10_3390_app14114929
crossref_primary_10_1016_j_ins_2021_02_013
crossref_primary_10_1007_s41095_024_0424_2
crossref_primary_10_1109_ACCESS_2022_3150411
crossref_primary_10_1109_TITS_2023_3257873
crossref_primary_10_1109_TIP_2023_3238642
crossref_primary_10_1109_TITS_2020_3030301
crossref_primary_10_1109_TITS_2021_3103961
crossref_primary_10_1016_j_ipm_2022_102868
crossref_primary_10_3390_electronics11091354
crossref_primary_10_1109_TITS_2021_3086142
crossref_primary_10_32604_cmc_2024_058461
crossref_primary_10_1109_TMM_2021_3134839
crossref_primary_10_1038_s41598_024_77973_8
crossref_primary_10_1109_TITS_2022_3166463
crossref_primary_10_1109_TMM_2023_3283054
crossref_primary_10_3390_s24020616
crossref_primary_10_1016_j_cie_2023_109619
crossref_primary_10_1007_s11263_023_01873_z
crossref_primary_10_1016_j_engappai_2024_109568
crossref_primary_10_1590_1678_4324_2021210296
crossref_primary_10_1109_ACCESS_2021_3097964
crossref_primary_10_3390_electronics11101617
crossref_primary_10_1016_j_inffus_2023_101901
crossref_primary_10_1109_TIM_2023_3285978
crossref_primary_10_1109_TITS_2024_3367723
crossref_primary_10_1109_TIV_2023_3292513
crossref_primary_10_1038_s41598_024_82755_3
crossref_primary_10_1109_TIP_2022_3202370
crossref_primary_10_1145_3474596
crossref_primary_10_1016_j_trc_2021_103067
crossref_primary_10_1093_jcde_qwad014
crossref_primary_10_1109_ACCESS_2019_2956172
crossref_primary_10_1109_JIOT_2020_3015239
crossref_primary_10_1007_s11042_024_18520_5
Cites_doi 10.1109/TMM.2018.2796240
10.1109/TIP.2017.2675201
10.1109/CVPR.2007.383172
10.1109/CVPR.2018.00110
10.1109/TIP.2018.2819820
10.1109/CVPR.2017.19
10.1007/978-3-319-46475-6_43
10.1109/ICCV.2017.49
10.1016/j.patcog.2016.11.018
10.1109/CVPRW.2016.195
10.1007/978-3-319-46448-0_1
10.1109/CVPR.2015.7299023
10.1109/TITS.2016.2639020
10.1109/ICCV.2017.629
10.1109/ICCV.2017.244
10.1109/TMM.2011.2170666
10.1007/978-3-319-46493-0_47
10.1109/CVPR.2018.00016
10.1109/CVPR.2017.632
10.1109/TIP.2018.2818438
10.1109/TIP.2018.2815840
10.1007/978-3-319-46478-7_31
10.1631/jzus.C1300291
10.1109/CVPR.2014.180
10.1109/CVPR.2016.265
10.1007/978-3-319-46475-6_53
10.1109/TIP.2018.2851098
10.1109/CVPR.2015.7298832
10.1109/CVPR.2016.90
10.1109/TPAMI.2017.2764893
10.1109/TIP.2017.2683063
10.1109/ICME.2016.7553002
10.1109/CVPR.2018.00679
10.1109/TIP.2017.2695101
10.1007/978-3-319-46484-8_31
10.1109/CVPR.2016.238
10.1109/ICCV.2017.210
10.1109/CVPR.2016.126
10.1109/MITS.2013.2288648
10.1109/CVPR.2015.7298682
10.1109/TIP.2017.2652725
10.1109/CVPR.2016.89
10.1109/ICCV.2017.310
10.1109/TITS.2015.2496545
10.1109/TIP.2017.2765836
10.5244/C.31.186
10.1109/ICCV.2017.405
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2019.2902112
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 3807
ExternalDocumentID 30835224
10_1109_TIP_2019_2902112
8653852
Genre orig-research
Journal Article
GrantInformation_xml – fundername: NRF-NSFC
  grantid: NRF2016NRF-NSFC001-098
– fundername: National Basic Research Program of China (973 Program); National Key Research and Development Program of China
  grantid: 2016YFB1001501
  funderid: 10.13039/501100012166
– fundername: National Research Foundation Singapore
  funderid: 10.13039/501100001381
– fundername: National Natural Science Foundation of China
  grantid: U1611461; 61661146005
  funderid: 10.13039/501100001809
– fundername: Shenzhen Municipal Science and Technology Program
  grantid: JCYJ20170818141146428
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
NPM
PKN
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c347t-85bc3b2bf0faca3e3e0cd3cb2900a4c38e2f964aa858cf89bbaf02dd7ca989133
IEDL.DBID RIE
ISSN 1057-7149
1941-0042
IngestDate Fri Jul 11 07:19:11 EDT 2025
Mon Jun 30 10:25:02 EDT 2025
Wed Feb 19 02:34:10 EST 2025
Tue Jul 01 02:03:19 EDT 2025
Thu Apr 24 23:08:25 EDT 2025
Wed Aug 27 08:32:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-85bc3b2bf0faca3e3e0cd3cb2900a4c38e2f964aa858cf89bbaf02dd7ca989133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4491-2023
0000-0002-4365-4165
0000-0002-3583-959X
PMID 30835224
PQID 2239681387
PQPubID 85429
PageCount 14
ParticipantIDs proquest_miscellaneous_2188210755
proquest_journals_2239681387
ieee_primary_8653852
crossref_primary_10_1109_TIP_2019_2902112
pubmed_primary_30835224
crossref_citationtrail_10_1109_TIP_2019_2902112
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref54
zhang (ref29) 2015
yuan (ref10) 2016
ref17
ref18
ref51
ref50
ref46
ref48
ref41
ref8
ref7
ref9
ref4
ref3
ref6
ref5
choi (ref49) 2017
arjovsky (ref44) 2017
liu (ref40) 2016
ma (ref19) 2017
ref37
chen (ref43) 2016
ref36
ref31
ref30
ref33
ref32
ref2
goodfellow (ref16) 2014
ref1
ref39
ref38
denton (ref45) 2015
hermans (ref61) 2017
ref24
ref23
ref26
ref25
ref20
ref22
zhao (ref42) 2016
ref21
radford (ref47) 2015
ref28
ref27
mirza (ref35) 2014
ref60
li (ref34) 2018
ref62
ulyanov (ref56) 2016
References_xml – ident: ref28
  doi: 10.1109/TMM.2018.2796240
– ident: ref24
  doi: 10.1109/TIP.2017.2675201
– ident: ref62
  doi: 10.1109/CVPR.2007.383172
– ident: ref50
  doi: 10.1109/CVPR.2018.00110
– start-page: 2672
  year: 2014
  ident: ref16
  article-title: Generative adversarial nets
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2017
  ident: ref61
  publication-title: Defense of the Triplet Loss for Person Re-Identification
– ident: ref31
  doi: 10.1109/TIP.2018.2819820
– ident: ref38
  doi: 10.1109/CVPR.2017.19
– ident: ref54
  doi: 10.1007/978-3-319-46475-6_43
– ident: ref60
  doi: 10.1109/ICCV.2017.49
– year: 2016
  ident: ref56
  publication-title: Instance normalization The missing ingredient for fast stylization
– ident: ref18
  doi: 10.1016/j.patcog.2016.11.018
– ident: ref9
  doi: 10.1109/CVPRW.2016.195
– start-page: 2172
  year: 2016
  ident: ref43
  article-title: InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref14
  doi: 10.1007/978-3-319-46448-0_1
– ident: ref8
  doi: 10.1109/CVPR.2015.7299023
– ident: ref1
  doi: 10.1109/TITS.2016.2639020
– ident: ref46
  doi: 10.1109/ICCV.2017.629
– ident: ref48
  doi: 10.1109/ICCV.2017.244
– ident: ref27
  doi: 10.1109/TMM.2011.2170666
– ident: ref37
  doi: 10.1007/978-3-319-46493-0_47
– ident: ref17
  doi: 10.1109/CVPR.2018.00016
– ident: ref57
  doi: 10.1109/CVPR.2017.632
– ident: ref21
  doi: 10.1109/TIP.2018.2818438
– ident: ref26
  doi: 10.1109/TIP.2018.2815840
– year: 2016
  ident: ref42
  publication-title: Energy-based Generative Adversarial Network
– ident: ref52
  doi: 10.1007/978-3-319-46478-7_31
– ident: ref12
  doi: 10.1631/jzus.C1300291
– start-page: 469
  year: 2016
  ident: ref40
  article-title: Coupled generative adversarial networks
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 214
  year: 2017
  ident: ref44
  article-title: Wasserstein generative adversarial networks
  publication-title: Proc Int Conf Mach Learn
– ident: ref30
  doi: 10.1109/CVPR.2014.180
– ident: ref39
  doi: 10.1109/CVPR.2016.265
– ident: ref5
  doi: 10.1007/978-3-319-46475-6_53
– ident: ref33
  doi: 10.1109/TIP.2018.2851098
– year: 2014
  ident: ref35
  publication-title: Conditional generative adversarial nets
– ident: ref58
  doi: 10.1109/CVPR.2015.7298832
– start-page: 1
  year: 2018
  ident: ref34
  article-title: Discriminative semi-coupled projective dictionary learning for low-resolution person re-identification
  publication-title: Proc AAAI
– ident: ref55
  doi: 10.1109/CVPR.2016.90
– ident: ref32
  doi: 10.1109/TPAMI.2017.2764893
– ident: ref20
  doi: 10.1109/TIP.2017.2683063
– ident: ref3
  doi: 10.1109/ICME.2016.7553002
– ident: ref4
  doi: 10.1109/CVPR.2018.00679
– ident: ref22
  doi: 10.1109/TIP.2017.2695101
– ident: ref36
  doi: 10.1007/978-3-319-46484-8_31
– year: 2017
  ident: ref49
  publication-title: StarGAN Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation
– ident: ref6
  doi: 10.1109/CVPR.2016.238
– ident: ref11
  doi: 10.1109/ICCV.2017.210
– ident: ref53
  doi: 10.1109/CVPR.2016.126
– year: 2017
  ident: ref19
  publication-title: Disentangled person image generation
– ident: ref7
  doi: 10.1109/MITS.2013.2288648
– year: 2015
  ident: ref29
  publication-title: Embedding label structures for fine-grained feature representation
– ident: ref13
  doi: 10.1109/CVPR.2015.7298682
– start-page: 1486
  year: 2015
  ident: ref45
  article-title: Deep generative image models using a Laplacian pyramid of adversarial networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref25
  doi: 10.1109/TIP.2017.2652725
– ident: ref15
  doi: 10.1109/CVPR.2016.89
– ident: ref41
  doi: 10.1109/ICCV.2017.310
– year: 2015
  ident: ref47
  publication-title: Unsupervised Representation learning with deep convolutional generative adversarial networks CoRR
– ident: ref2
  doi: 10.1109/TITS.2015.2496545
– year: 2016
  ident: ref10
  publication-title: Hard-aware deeply cascaded embedding
– ident: ref23
  doi: 10.1109/TIP.2017.2765836
– ident: ref59
  doi: 10.5244/C.31.186
– ident: ref51
  doi: 10.1109/ICCV.2017.405
SSID ssj0014516
Score 2.608851
Snippet The high similarities of different real-world vehicles and great diversities of the acquisition views pose grand challenges to vehicle re-identification...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3794
SubjectTerms Algorithms
cross-view
Embedding
embedding adversarial learning
Gallium nitride
generative adversarial network
Generative adversarial networks
hard negatives
Image generation
Licenses
Machine learning
Optimization
Space vehicles
Task analysis
Training
Vehicle Re-Identification
Vehicles
Title Embedding Adversarial Learning for Vehicle Re-Identification
URI https://ieeexplore.ieee.org/document/8653852
https://www.ncbi.nlm.nih.gov/pubmed/30835224
https://www.proquest.com/docview/2239681387
https://www.proquest.com/docview/2188210755
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1da9sw8GjztD00bbKtXtPiwV4Gc6JIlm1BX0pJyQYbY6Sjb0aSpRbaJmNJXvbre2fLZhtr6YsxWJLl-_Dd6b4A3vvc8Kqy1L3M4CX3NtHM5knGPNUr85TvSNEWX7P5Zfr5Sl7twMcuF8Y5VwefuTHd1r78amW3dFQ2KTJkT4k_3F003Jpcrc5jQA1na8-mzJMc1f7WJcnUZPHpG8VwqTFXKNGm1MBGNJpH-pc0qturPK5p1hLnog9f2r02gSa34-3GjO3vf8o4Pvdj9mEvqJ7xWUMrB7DjlgPoBzU0Dky-HsDLP2oUDuF0dm9cRRIurps3rzWRbBzqsl7HqPTGP9wNLRl_d0mT-OvDSeAruLyYLc7nSWi5kFiR5pukkMYKw41nXlstnHDMVsIahBzTqRWF415lqdaFLKwvlDHaM0R2brUih6d4Db3laukOIWaKaW49GuvSpCplOhNcWU6zOHdSRzBpQV_aUI-c2mLclbVdwlSJeCsJb2XAWwQfuhk_m1ocT4wdEsi7cQHaEYxa7JaBWdclakgqK6aiyCN41z1GNiPfiV661RbHTNEUQVNZygjeNFTRrd0S09v_v_MIXtDOmqjBEfQ2v7buGDWZjTmpSfgBaTvsAA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1dT9sw8ITgge1hjLKPMDYyiZdJS-vacRJLe5kmUMsAIVQm3iLbsYfE1iLavvDruUucCCZAe4kixXac-8jd-b4A9nxueFVZ6l5m8JJ7m2hm8yRjnuqVecp3pGiLk2x0nh5eyIsV-Nrlwjjn6uAz16fb2pdfzeySjsoGRYbsKfGHu4ZyXw6bbK3OZ0AtZ2vfpsyTHBX_1inJ1GAyPqUoLtXnCmXakFrYiEb3SB_Io7rBytO6Zi1zDjbguN1tE2py1V8uTN_e_lPI8X8_5zW8Cspn_L2hlk1YcdMebARFNA5sPu_By3tVCrfg2_5f4yqScXHdvnmuiWjjUJn1d4xqb_zLXdKS8ZlLmtRfH84C38D5wf7kxygJTRcSK9J8kRTSWGG48cxrq4UTjtlKWIOQYzq1onDcqyzVupCF9YUyRnuG6M6tVuTyFG9hdTqbuvcQM8U0tx7NdWlSlTKdCa4sp1mcO6kjGLSgL22oSE6NMf6UtWXCVIl4KwlvZcBbBF-6GddNNY5nxm4RyLtxAdoR7LTYLQO7zkvUkVRWDEWRR_C5e4yMRt4TPXWzJY4ZojGCxrKUEbxrqKJbuyWm7cffuQvro8nxUXk0Pvn5AV7QLpsYwh1YXdws3UfUaxbmU03Od-F670k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Embedding+Adversarial+Learning+for+Vehicle+Re-Identification&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Lou%2C+Yihang&rft.au=Bai%2C+Yan&rft.au=Liu%2C+Jun&rft.au=Wang%2C+Shiqi&rft.date=2019-08-01&rft.issn=1941-0042&rft.eissn=1941-0042&rft.volume=28&rft.issue=8&rft.spage=3794&rft_id=info:doi/10.1109%2FTIP.2019.2902112&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon