Embedding Adversarial Learning for Vehicle Re-Identification

The high similarities of different real-world vehicles and great diversities of the acquisition views pose grand challenges to vehicle re-identification (ReID), which traditionally maps the vehicle images into a high-dimensional embedding space for distance optimization, vehicle discrimination, and...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 28; no. 8; pp. 3794 - 3807
Main Authors Lou, Yihang, Bai, Yan, Liu, Jun, Wang, Shiqi, Duan, Ling-Yu
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The high similarities of different real-world vehicles and great diversities of the acquisition views pose grand challenges to vehicle re-identification (ReID), which traditionally maps the vehicle images into a high-dimensional embedding space for distance optimization, vehicle discrimination, and identification. To improve the discriminative capability and robustness of the ReID algorithm, we propose a novel end-to-end embedding adversarial learning network (EALN) that is capable of generating samples localized in the embedding space. Instead of selecting abundant hard negatives from the training set, which is extremely difficult if not impossible, with our embedding adversarial learning scheme, the automatically generated hard negative samples in the specified embedding space can greatly improve the capability of the network for discriminating similar vehicles. Moreover, the more challenging cross-view vehicle ReID problem, which requires the ReID algorithm to be robust with different query views, can also benefit from such a scheme based on the artificially generated cross-view samples. We demonstrate the promise of EALN through extensive experiments and show the effectiveness of hard negative and cross-view generation in facilitating vehicle ReID based on the comparisons with the state-of-the-art schemes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1057-7149
1941-0042
1941-0042
DOI:10.1109/TIP.2019.2902112