SV2B defines a subpopulation of synaptic vesicles

Abstract Synaptic vesicles can undergo several modes of exocytosis, endocytosis, and trafficking within individual synapses, and their fates may be linked to different vesicular protein compositions. Here, we mapped the intrasynaptic distribution of the synaptic vesicle proteins SV2B and SV2A in glu...

Full description

Saved in:
Bibliographic Details
Published inJournal of molecular cell biology Vol. 15; no. 9
Main Authors Paulussen, Isabelle, Beckert, Hannes, Musial, Timothy F, Gschossmann, Lena J, Wolf, Julia, Schmitt, Mathieu, Clasadonte, Jérôme, Mairet-Coello, Georges, Wolff, Christian, Schoch, Susanne, Dietrich, Dirk
Format Journal Article
LanguageEnglish
Published United States Oxford University Press 04.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Synaptic vesicles can undergo several modes of exocytosis, endocytosis, and trafficking within individual synapses, and their fates may be linked to different vesicular protein compositions. Here, we mapped the intrasynaptic distribution of the synaptic vesicle proteins SV2B and SV2A in glutamatergic synapses of the hippocampus using three-dimensional electron microscopy. SV2B was almost completely absent from docked vesicles and a distinct cluster of vesicles found near the active zone. In contrast, SV2A was found in all domains of the synapse and was slightly enriched near the active zone. SV2B and SV2A were found on the membrane in the peri-active zone, suggesting the recycling from both clusters of vesicles. SV2B knockout mice displayed an increased seizure induction threshold only in a model employing high-frequency stimulation. Our data show that glutamatergic synapses generate molecularly distinct populations of synaptic vesicles and are able to maintain them at steep spatial gradients. The almost complete absence of SV2B from vesicles at the active zone of wildtype mice may explain why SV2A has been found more important for vesicle release.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-2788
1759-4685
1759-4685
DOI:10.1093/jmcb/mjad054