THE CROSSING FREQUENCY AS A MEASURE OF HEAT EXCHANGER SUPPORT-PLATE EFFECTIVENESS

The crossing frequency is the number of times per second the vibration amplitude crosses the zero displacement line from negative displacement to positive displacement. In flow-induced vibration in which the motions are often random and/or a number of modes contribute to the vibration amplitudes, th...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluids and structures Vol. 16; no. 1; pp. 83 - 92
Main Author AU-YANG, M.K.
Format Journal Article
LanguageEnglish
Published London Elsevier Ltd 01.01.2002
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The crossing frequency is the number of times per second the vibration amplitude crosses the zero displacement line from negative displacement to positive displacement. In flow-induced vibration in which the motions are often random and/or a number of modes contribute to the vibration amplitudes, the crossing frequencies are modal-weighted average frequencies of the vibration. It is postulated in this paper that the crossing frequency can be used as a measure of heat exchanger support-plate effectiveness. Using a time-domain, nonlinear analysis technique, the crossing frequencies of a tube vibrating in support plates with oversized holes can be computed as a function of time and the tube-to-support-plate clearances. It was found that the fluid–elastic stability margin of a tube bundle, in the context of the original Connors' equation for tube bundle fluid–elastic instability, should be independent of the tube-to-support-plate clearances. A simple method of estimating the critical velocity based on the time-domain equation of fluid–elastic stability is suggested.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0889-9746
1095-8622
DOI:10.1006/jfls.2001.0404