Investigation of 1,2-Dimyristoyl-sn-Glycero-3-Phosphoglycerol-Sodium (DMPG-Na) Lipid with Various Metal Cations in Nanocochleate Preformulation: Application for Andrographolide Oral Delivery in Cancer Therapy

This study aimed at carrying out a preformulation investigation of nanocochleates (NCs) and develop andrographolide-loaded nanocochleates. Preformulation study comprised of exploring the effect of trivalent and divalent ions on transition temperature (TT) of lipid (DMPG-Na), on particle size (PS), e...

Full description

Saved in:
Bibliographic Details
Published inAAPS PharmSciTech Vol. 21; no. 7; p. 279
Main Authors Ahiwale, Raj J., Chellampillai, Bothiraja, Pawar, Atmaram P.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 09.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study aimed at carrying out a preformulation investigation of nanocochleates (NCs) and develop andrographolide-loaded nanocochleates. Preformulation study comprised of exploring the effect of trivalent and divalent ions on transition temperature (TT) of lipid (DMPG-Na), on particle size (PS), entrapment efficacy (EE), zeta potential (ZP) of NCs, and effect of NCs on change in lipid solubility post-NC formation. Further, the andrographolide-loaded nanocochleates made with CaCl 2 (ANDNCs) were characterized for ZP, PS, EE, X-ray powder diffraction (PXRD), differential scanning calorimetry (DSC), transition electron microscopy (TEM), in vitro release studies, in vitro anticancer potential on the cell line of human breast cancer (MCF-7), in vivo oral pharmacokinetic studies, and tissue distribution in female Wistar rats. Nanocochleates developed with CaCl 2 had a significant reduction in PS (1.78-fold) and ZP (1.38-fold), and elevation of EE (1.17-fold) as compared to AlCl 3 developed NCs. Trivalent ions demonstrated elevation of TT as compared to divalent ions. Spiral-shaped ANDNCs demonstrated ZP, PS, and EE of − 121.46 ± 15.12 mV, 360 ± 47 nm, and 68.12 ± 3.81% respectively. In vitro release study of ANDNCs showed a strong pH-dependent release profile due to hydrogen bonding between NCs and andrographolide (AND). Formulated ANDNCs demonstrated 26.99-fold decrease in IC50 value as compared to free AND. Additionally, the oral bioavailability of AND from ANDNCs improved by 1.81-fold as compared to free AND. Furthermore, ANDNCs showed minimum accumulation within the vital organs such as liver, kidney, and spleen. Briefly, the preformulation study laid a platform for better understanding the NCs and its components. Further, developed ANDNCs revealed superior physiochemical properties to be used as an alternative for a clinical setting.
ISSN:1530-9932
1530-9932
DOI:10.1208/s12249-020-01801-1