Autophagy-Inducing Inhalable Co-crystal Formulation of Niclosamide-Nicotinamide for Lung Cancer Therapy

Niclosamide (NIC), an anthelminthic drug, is found to be promising in overcoming the problem of various types of drug-resistant cancer. In spite of strong anti-proliferative effect, NIC shows low aqueous solubility, leading to poor bioavailability. To overcome this limitation, and enhance its physic...

Full description

Saved in:
Bibliographic Details
Published inAAPS PharmSciTech Vol. 21; no. 7; p. 260
Main Authors Ray, Eupa, Vaghasiya, Kalpesh, Sharma, Ankur, Shukla, Rahul, Khan, Rehan, Kumar, Anil, Verma, Rahul Kumar
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 17.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Niclosamide (NIC), an anthelminthic drug, is found to be promising in overcoming the problem of various types of drug-resistant cancer. In spite of strong anti-proliferative effect, NIC shows low aqueous solubility, leading to poor bioavailability. To overcome this limitation, and enhance its physicochemical properties and pharmacokinetic profile, we used co-crystallization technique as a promising strategy. In this work, we brought together the crystal and particle engineering at a time using spray drying to enhance physicochemical and aerodynamic properties of co-crystal particle for inhalation purpose. We investigated the formation and evaluation of pharmaceutical co-crystals of niclosamide-nicotinamide (NIC-NCT) prepared by rapid, continuous and scalable spray drying method and compared with conventional solvent evaporation technique. The newly formed co-crystal was evaluated by XRPD, FTIR, Raman spectroscopy and DSC, which showed an indication of formation of H bonds between drug (NIC) and co-former (NCT) as a major binding force in co-crystal development. The particle geometry of co-crystals including spherical shape, size 1–5 μm and aerodynamic properties (ED, 97.1 ± 8.9%; MMAD, 3.61 ± 0.87 μm; FPF, 71.74 ± 6.9% and GSD 1.46) attributes suitable for inhalation. For spray-dried co-crystal systems, an improvement in solubility characteristics (≥ 14.8-fold) was observed, relative to pure drug. To investigate the anti-proliferative activity, NIC-NCT co-crystals were investigated on A549 human lung adenomas cells, which showed a superior cytotoxic activity compared with pure drug. Mechanistically, NIC-NCT co-crystals enhanced autophagic flux in cancer cell which demonstrates autophagy-mediated cell death as shown by confocal microscopy. This technique could help in improving bioavailability of drug, hence reducing the need for high dosages and signifying a novel paradigm for future clinical applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1530-9932
1530-9932
DOI:10.1208/s12249-020-01803-z