Thermal enhancement and stochastic resonance of polaron ratchets

We study the ratchet drift of large polarons (solitons) in molecular diatomic chains induced by unbiased time periodic electric fields at nonzero temperature below its critical value. We show that, at a nonzero temperature, the critical value of the intensity of the electric field above which the ra...

Full description

Saved in:
Bibliographic Details
Published inPhysical review. E, Statistical, nonlinear, and soft matter physics Vol. 89; no. 6; p. 062905
Main Authors Brizhik, L S, Eremko, A A, Piette, B M A G, Zakrzewski, W J
Format Journal Article
LanguageEnglish
Published United States 01.06.2014
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:We study the ratchet drift of large polarons (solitons) in molecular diatomic chains induced by unbiased time periodic electric fields at nonzero temperature below its critical value. We show that, at a nonzero temperature, the critical value of the intensity of the electric field above which the ratchet phenomenon takes place is lower than at zero temperature for the same frequency of the field. We show that there is a range of temperatures for which the polaron drift is larger than that at zero temperature. We also show that temperature decreases the value of the lowest critical period of the field. And, finally, we demonstrate that there is a stochastic resonance in a polaron ratchet, namely that there is an optimal temperature at which the polaron drift is a maximum. The values of the stochastic resonance temperature, the lowest critical values of the field intensity, and its period depend on various parameters of the system and, in particular, on the anisotropy of the chain parameters. This temperature induced decrease of the critical value of the field intensity and its period, as well as the stochastic resonance itself, may be important for practical applications of the ratchet phenomenon in systems involving conducting polymers and other low-dimensional materials. They may also be important in some biological macromolecules where the ratchet phenomenon could take place in biomotors and energy and/or charge transport.
ISSN:1550-2376
DOI:10.1103/PhysRevE.89.062905