A Probabilistic Method for Image Enhancement With Simultaneous Illumination and Reflectance Estimation

In this paper, a new probabilistic method for image enhancement is presented based on a simultaneous estimation of illumination and reflectance in the linear domain. We show that the linear domain model can better represent prior information for better estimation of reflectance and illumination than...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 24; no. 12; pp. 4965 - 4977
Main Authors Fu, Xueyang, Liao, Yinghao, Zeng, Delu, Huang, Yue, Zhang, Xiao-Ping, Ding, Xinghao
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, a new probabilistic method for image enhancement is presented based on a simultaneous estimation of illumination and reflectance in the linear domain. We show that the linear domain model can better represent prior information for better estimation of reflectance and illumination than the logarithmic domain. A maximum a posteriori (MAP) formulation is employed with priors of both illumination and reflectance. To estimate illumination and reflectance effectively, an alternating direction method of multipliers is adopted to solve the MAP problem. The experimental results show the satisfactory performance of the proposed method to obtain reflectance and illumination with visually pleasing enhanced results and a promising convergence rate. Compared with other testing methods, the proposed method yields comparable or better results on both subjective and objective assessments.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2015.2474701