The role of As species in self-catalyzed growth of GaAs and GaAsSb nanowires

Precise control and broad tunability of the growth parameters are essential in engineering the optical and electrical properties of semiconductor nanowires (NWs) to make them suitable for practical applications. To this end, we report the effect of As species, namely As2 and As4, on the growth of se...

Full description

Saved in:
Bibliographic Details
Published inNanotechnology Vol. 31; no. 46; p. 465601
Main Authors Koivusalo, Eero, Hilska, Joonas, Galeti, Helder V A, Galvão Gobato, Yara, Guina, Mircea, Hakkarainen, Teemu
Format Journal Article
LanguageEnglish
Published IOP Publishing 13.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Precise control and broad tunability of the growth parameters are essential in engineering the optical and electrical properties of semiconductor nanowires (NWs) to make them suitable for practical applications. To this end, we report the effect of As species, namely As2 and As4, on the growth of self-catalyzed GaAs based NWs. The role of As species is further studied in the presence of Te as n-type dopant in GaAs NWs and Sb as an additional group V element to form GaAsSb NWs. Using As4 enhances the growth of NWs in the axial direction over a wide range of growth parameters and diminishes the tendency of Te and Sb to reduce the NW aspect ratio. By extending the axial growth parameter window, As4 allows growth of GaAsSb NWs with up to 47% in Sb composition. On the other hand, As2 favors sidewall growth which enhances the growth in the radial direction. Thus, the selection of As species is critical for tuning not only the NW dimensions, but also the incorporation mechanisms of dopants and ternary elements. Moreover, the commonly observed dependence of twinning on Te and Sb remains unaffected by the As species. By exploiting the extended growth window associated with the use of As4, enhanced Sb incorporation and optical emission up to 1400 nm wavelength range is demonstrated. This wavelength corresponds to the telecom E-band, which opens new prospects for this NW material system in future telecom applications while simultaneously enabling their integration to the silicon photonics platform.
Bibliography:NANO-126241.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0957-4484
1361-6528
DOI:10.1088/1361-6528/abac34