Pressure-sensitive plasticity of lithiated silicon in Li-ion batteries

Lithiation-induced plasticity is a key factor that enables Si electrodes to maintain long cycle life in Li-ion batteries. We study the plasticity of various lithiated sili-con phases based on first-principles calculations and iden-tify the linear dependence of the equivalent yield stress on the hydr...

Full description

Saved in:
Bibliographic Details
Published inActa mechanica Sinica Vol. 29; no. 3; pp. 379 - 387
Main Authors Zhao, Ke-Jie, Li, Yong-Gang, Brassart, Laurence
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Lithiation-induced plasticity is a key factor that enables Si electrodes to maintain long cycle life in Li-ion batteries. We study the plasticity of various lithiated sili-con phases based on first-principles calculations and iden-tify the linear dependence of the equivalent yield stress on the hydrostatic pressure. Such dependence may cause the compression-tension asymmetry in an amorphous Si thin film electrode from a lithiation to delithiation cycle, and leads to subsequent ratcheting of the electrode after cyclic lithiation. We propose a yield criterion of amorphous lithi-ated silicon that includes the effects of the hydrostatic stress and the lithiation reaction. We further examine the micro-scopic mechanism of deformation in lithiated silicon under mechanical load, which is attributed to the flow-defects mediated local bond switching and cavitation. Hydrostatic compression confines the flow defects thus effectively strength-ens the amorphous structure, and vice versa.
Bibliography:Lithiation-induced plasticity is a key factor that enables Si electrodes to maintain long cycle life in Li-ion batteries. We study the plasticity of various lithiated sili-con phases based on first-principles calculations and iden-tify the linear dependence of the equivalent yield stress on the hydrostatic pressure. Such dependence may cause the compression-tension asymmetry in an amorphous Si thin film electrode from a lithiation to delithiation cycle, and leads to subsequent ratcheting of the electrode after cyclic lithiation. We propose a yield criterion of amorphous lithi-ated silicon that includes the effects of the hydrostatic stress and the lithiation reaction. We further examine the micro-scopic mechanism of deformation in lithiated silicon under mechanical load, which is attributed to the flow-defects mediated local bond switching and cavitation. Hydrostatic compression confines the flow defects thus effectively strength-ens the amorphous structure, and vice versa.
11-2063/O3
Li-ion batteries · Si · Pressure-sensitive plasticity · Ratcheting.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0567-7718
1614-3116
DOI:10.1007/s10409-013-0041-2