Phase transitions and multicritical behavior in the Ising model with dipolar interactions

In this work, the phase diagram of the ferromagnetic Ising model with dipole interactions is revisited with the aim of determining the nature of the phase transition between stripe-ordered phases with width n (h_{n}) and tetragonal liquid (TL) phases. Extensive Monte Carlo simulations are performed...

Full description

Saved in:
Bibliographic Details
Published inPhysical review. E Vol. 94; no. 4-1; p. 042104
Main Authors Bab, M A, Horowitz, C M, Rubio Puzzo, M L, Saracco, G P
Format Journal Article
LanguageEnglish
Published United States 01.10.2016
Online AccessGet more information

Cover

Loading…
More Information
Summary:In this work, the phase diagram of the ferromagnetic Ising model with dipole interactions is revisited with the aim of determining the nature of the phase transition between stripe-ordered phases with width n (h_{n}) and tetragonal liquid (TL) phases. Extensive Monte Carlo simulations are performed in order to study the short-time dynamic behavior of the observables for selected values of the ratio between the ferromagnetic exchange and dipolar constants δ. The obtained results indicate that the h_{1}-TL phase transition line is continuous up to δ=1.2585, while for the h_{2}-TL line a weak first-order character is found in the interval 1.2585≤δ≤1.36 and becomes continuous for 1.37≤δ≤1.9. This result suggests the existence of a tricritical point close to δ=1.37. When it is appropriate, the complete set of critical exponents is obtained, and in all the studied cases they depend on δ but do not belong to the Ising universality class. Furthermore, short-time dynamic studies reveal that at the point where the mentioned lines meet the h_{1}-h_{2} line, i.e., at δ=1.2585, the critical phase corresponding to the h_{1}-TL transition coexists with the h_{2} phase.
ISSN:2470-0053
DOI:10.1103/PhysRevE.94.042104