Deep Learning Diffuse Optical Tomography

Diffuse optical tomography (DOT) has been investigated as an alternative imaging modality for breast cancer detection thanks to its excellent contrast to hemoglobin oxidization level. However, due to the complicated non-linear photon scattering physics and ill-posedness, the conventional reconstruct...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 39; no. 4; pp. 877 - 887
Main Authors Yoo, Jaejun, Sabir, Sohail, Heo, Duchang, Kim, Kee Hyun, Wahab, Abdul, Choi, Yoonseok, Lee, Seul-I, Chae, Eun Young, Kim, Hak Hee, Bae, Young Min, Choi, Young-Wook, Cho, Seungryong, Ye, Jong Chul
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2019.2936522

Cover

Loading…
More Information
Summary:Diffuse optical tomography (DOT) has been investigated as an alternative imaging modality for breast cancer detection thanks to its excellent contrast to hemoglobin oxidization level. However, due to the complicated non-linear photon scattering physics and ill-posedness, the conventional reconstruction algorithms are sensitive to imaging parameters such as boundary conditions. To address this, here we propose a novel deep learning approach that learns non-linear photon scattering physics and obtains an accurate three dimensional (3D) distribution of optical anomalies. In contrast to the traditional black-box deep learning approaches, our deep network is designed to invert the Lippman-Schwinger integral equation using the recent mathematical theory of deep convolutional framelets. As an example of clinical relevance, we applied the method to our prototype DOT system. We show that our deep neural network, trained with only simulation data, can accurately recover the location of anomalies within biomimetic phantoms and live animals without the use of an exogenous contrast agent.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0278-0062
1558-254X
1558-254X
DOI:10.1109/TMI.2019.2936522