Lipschitz Properties in Variable Exponent Problems via Relative Rearrangement
The author first studies the Lipschitz properties of the monotone and relative rearrangement mappings in variable exponent Lebesgue spaces completing the result given in [9]. This paper is ended by establishing the Lipschitz properties for quasilinear problems with variable exponent when the right-h...
Saved in:
Published in | Chinese annals of mathematics. Serie B Vol. 31; no. 6; pp. 991 - 1006 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer-Verlag
01.11.2010
UMR 6086 CNRS.Laboratoire de Mathématiques,Université de Poitiers,SP2MI,Boulevard Marie et Pierre Curie,Téléport 2,BP30179,86962 Futuroscope Chasseneuil Cedex,France |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The author first studies the Lipschitz properties of the monotone and relative rearrangement mappings in variable exponent Lebesgue spaces completing the result given in [9]. This paper is ended by establishing the Lipschitz properties for quasilinear problems with variable exponent when the right-hand side is in some dual spaces of a suitable Sobolev space associated to variable exponent. |
---|---|
Bibliography: | Monotone rearrangement O174.41 Monotone rearrangement; Relative rearrangement; Variable exponents; Quasi-linear equations Relative rearrangement 31-1329/O1 TQ246.35 Variable exponents Quasi-linear equations |
ISSN: | 0252-9599 1860-6261 |
DOI: | 10.1007/s11401-010-0608-1 |