Lipschitz Properties in Variable Exponent Problems via Relative Rearrangement

The author first studies the Lipschitz properties of the monotone and relative rearrangement mappings in variable exponent Lebesgue spaces completing the result given in [9]. This paper is ended by establishing the Lipschitz properties for quasilinear problems with variable exponent when the right-h...

Full description

Saved in:
Bibliographic Details
Published inChinese annals of mathematics. Serie B Vol. 31; no. 6; pp. 991 - 1006
Main Author Rakotoson, Jean-Michel
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer-Verlag 01.11.2010
UMR 6086 CNRS.Laboratoire de Mathématiques,Université de Poitiers,SP2MI,Boulevard Marie et Pierre Curie,Téléport 2,BP30179,86962 Futuroscope Chasseneuil Cedex,France
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The author first studies the Lipschitz properties of the monotone and relative rearrangement mappings in variable exponent Lebesgue spaces completing the result given in [9]. This paper is ended by establishing the Lipschitz properties for quasilinear problems with variable exponent when the right-hand side is in some dual spaces of a suitable Sobolev space associated to variable exponent.
Bibliography:Monotone rearrangement
O174.41
Monotone rearrangement; Relative rearrangement; Variable exponents; Quasi-linear equations
Relative rearrangement
31-1329/O1
TQ246.35
Variable exponents
Quasi-linear equations
ISSN:0252-9599
1860-6261
DOI:10.1007/s11401-010-0608-1