Calibration of oscillometric non-invasive devices for monitoring blood pressure

Blood pressure is one of the most important vital signs used to monitor a patient's medical condition and is widely measured in hospitals and at home. Automatic, non-invasive blood pressure (NIBP) monitoring devices measure systolic and diastolic blood pressures from the analysis of cuff pressu...

Full description

Saved in:
Bibliographic Details
Published inMetrologia Vol. 52; no. 2; pp. 291 - 296
Main Authors Doh, Il, Lim, Hyun Kyoon, Ahn, Bongyoung
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.04.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Blood pressure is one of the most important vital signs used to monitor a patient's medical condition and is widely measured in hospitals and at home. Automatic, non-invasive blood pressure (NIBP) monitoring devices measure systolic and diastolic blood pressures from the analysis of cuff pressure oscillations caused by periodic variations of blood pressure in an artery. Currently, clinical validation by comparing them to the auscultatory reference has been used to verify the performance of NIBP devices. However, there are presently no calibration methods for NIBP devices. Here, we propose an SI-traceable calibration method for oscillometric NIBP devices. The calibration system generates pressure-pulses at pre-determined cuff pressures, and with pre-determined amplitude, to the device-under-test. The uncertainty of each pulse is analyzed and used for the calculation of blood pressure (BP) uncertainty. The maximum uncertainty for systolic and diastolic BP using the newly developed calibration system is (0.74 and 0.60) mmHg (k = 2) depending on the pressure and amplitude of each pulse, as well as the number of pulses applied. The present method can be used for calibration of oscillometric NIBP devices.
Bibliography:Bureau International des Poids et Mesures
MET-100238.R3
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0026-1394
1681-7575
DOI:10.1088/0026-1394/52/2/291