Advanced porous materials for antimicrobial treatment

Infectious diseases are a global public health concern generated by uncontrolled uses of antimicrobials resulting in multidrug‐resistant (MDR) pathogens. The antimicrobial resistance (AMR) has made explicit the ineffective action of the current medicines and vaccines. Rapid diagnosis and effective t...

Full description

Saved in:
Bibliographic Details
Published inNano select Vol. 5; no. 7-8
Main Authors Miguel Sábio, Rafael, Corrêa Carvalho, Gabriela, Li, Jiachen, Chorilli, Marlus, Santos, Hélder A.
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 01.08.2024
Wiley-VCH
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Infectious diseases are a global public health concern generated by uncontrolled uses of antimicrobials resulting in multidrug‐resistant (MDR) pathogens. The antimicrobial resistance (AMR) has made explicit the ineffective action of the current medicines and vaccines. Rapid diagnosis and effective treatment are the keys to reduce the capacity of MDR pathogens spreading very fast, avoiding high socioeconomic impact, severe and prolonged illness and death. Advanced porous materials have emerged as promising alternatives to the conventional diagnoses and therapy due to their low‐cost production, high biocompatibility, adjustable porous structure, large surface area, easy surface functionalization and capacity of loading high drugs amount. In this review, we first highlighted the current strategies to fight against infectious diseases. Then, we introduce the main advanced porous materials used in infectious diseases, including mesoporous silica nanoparticles (MSNs), porous silicon nanoparticles (PSiNPs), metal–organic frameworks (MOFs), covalent–organic frameworks (COFs), hydrogen‐bonded organic frameworks (HOFs) and porous carbon materials. The strategies to fabricate these materials and their characterization for the application in the recent years for antimicrobial treatment is also discussed. Finally, we present an overview outlook and challenges on the future application of such materials for infectious diseases. Current strategies to tackle infectious diseases are on demand. Here, the main advanced porous structures materials and their current progress towards for the treatment of infectious diseases are discussed. We expect that our review paper inspires new approaches to design precise nanomedicines based on such porous materials to fight against infectious diseases.
ISSN:2688-4011
2688-4011
DOI:10.1002/nano.202300114