Construction, molecular docking simulation and evaluation of electrochemical properties of polymeric nanospheres comprising novel synthesized monomer via green microemulsion polymerization

In recent years, the invention of polymers have attracted attention due to their unique properties. (E)‐2‐cyano‐N‐cyclohexyl‐3‐(dimethyl amino) acrylamide (CHAA) is a new type of functional monomer created by the usage of 2‐cyano‐N‐cyclohexylacetamide (3) and dimethylformamide‐dimethylacetal (DMF‐DM...

Full description

Saved in:
Bibliographic Details
Published inPolymers for advanced technologies Vol. 35; no. 1
Main Authors Sobh, Rokaya A., Magar, Hend S., Fahim, Asmaa M., Hashem, M.S.
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.01.2024
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In recent years, the invention of polymers have attracted attention due to their unique properties. (E)‐2‐cyano‐N‐cyclohexyl‐3‐(dimethyl amino) acrylamide (CHAA) is a new type of functional monomer created by the usage of 2‐cyano‐N‐cyclohexylacetamide (3) and dimethylformamide‐dimethylacetal (DMF‐DMA) utilized microwave energy as a green technology. In addition, polymers with significant nanosphere groups were obtained by polymerizing a new synthetic monomer (CHAA) with methyl methacrylate (MMA), dimethylaminoethyl methacrylate (DMAEMA) and acrylic acid (AA) using microemulsion polymerization technology. These polymer nanospheres were approved by different spectroscopic analyzes, such as FT‐IR, TEM, TGA, and H1NMR. New structurally defined poly (MMA/DMAEMA/AA/CHAA) nanospheres with an equivalent spherical diameter close to 50 nm and high thermal stability were obtained. In addition, these new polymer nanospheres exhibit good electrochemical performance and greater specific values compared to compound (CHAA) or poly (MMA/DMAEMA/AA). This is very important for the supercapacitor due to the fact that the voltammetry plots of these nanospheres display a well‐known hysteresis cycle. The newly synthesized polymer nanospheres exhibited antibacterial activity, which was confirmed by molecular docking simulations with different affinities. Also, the DFT investigation of the polymeric nanosphere was optimized utilizing B3LYP/6‐31(G) basis set and determination physical decribitors.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1042-7147
1099-1581
DOI:10.1002/pat.6248