A Multi-Constraint Co-Optimization LQG Frequency Steering Method for LEO Satellite Oscillators
High-precision time–frequency systems are essential for low Earth orbit (LEO) navigation satellites to achieve real-time (RT) centimeter-level positioning services. However, subject to stringent size, power, and cost constraints, LEO satellites are typically equipped with oven-controlled crystal osc...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 25; no. 15; p. 4733 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
31.07.2025
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | High-precision time–frequency systems are essential for low Earth orbit (LEO) navigation satellites to achieve real-time (RT) centimeter-level positioning services. However, subject to stringent size, power, and cost constraints, LEO satellites are typically equipped with oven-controlled crystal oscillators (OCXOs) as the system clock. The inherent long-term stability of OCXOs leads to rapid clock error accumulation, severely degrading positioning accuracy. To simultaneously balance multi-dimensional requirements such as clock bias accuracy, and frequency stability and phase continuity, this study proposes a linear quadratic Gaussian (LQG) frequency precision steering method that integrates a four-dimensional constraint integrated (FDCI) model and hierarchical weight optimization. An improved system error model is refined to quantify the covariance components (Σ11, Σ22) of the LQG closed-loop control system. Then, based on the FDCI model that explicitly incorporates quantization noise, frequency adjustment, frequency stability, and clock bias variance, a priority-driven collaborative optimization mechanism systematically determines the weight matrices, ensuring a robust tradeoff among multiple performance criteria. Experiments on OCXO payload products, with micro-step actuation, demonstrate that the proposed method reduces the clock error RMS to 0.14 ns and achieves multi-timescale stability enhancement. The short-to-long-term frequency stability reaches 9.38 × 10−13 at 100 s, and long-term frequency stability is 4.22 × 10−14 at 10,000 s, representing three orders of magnitude enhancement over a free-running OCXO. Compared to conventional PID control (clock bias RMS 0.38 ns) and pure Kalman filtering (stability 6.1 × 10−13 at 10,000 s), the proposed method reduces clock bias by 37% and improves stability by 93%. The impact of quantization noise on short-term stability (1–40 s) is contained within 13%. The principal novelty arises from the systematic integration of theoretical constraints and performance optimization within a unified framework. This approach comprehensively enhances the time–frequency performance of OCXOs, providing a low-cost, high-precision timing–frequency reference solution for LEO satellites. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s25154733 |