Composites of cellulose nanocrystals in combination with either cellulose nanofibril or carboxymethylcellulose as functional packaging films

Cellulose nanocrystals (CNC) were mixed with either cellulose nanofibril (CNF) or carboxymethylcellulose (CMC) in variable proportions (0/100, 20/80, 40/60, 50/50, 60/40, 80/20 and 100/0) to obtain cast films with acceptable barrier and mechanical properties as replacements for food packaging plasti...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of biological macromolecules Vol. 211; pp. 218 - 229
Main Authors Fernández-Santos, Julia, Valls, Cristina, Cusola, Oriol, Roncero, M. Blanca
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 30.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cellulose nanocrystals (CNC) were mixed with either cellulose nanofibril (CNF) or carboxymethylcellulose (CMC) in variable proportions (0/100, 20/80, 40/60, 50/50, 60/40, 80/20 and 100/0) to obtain cast films with acceptable barrier and mechanical properties as replacements for food packaging plastics. Both CNF and CMC improved tensile strength, elongation, UV opacity, air resistance, hydrophobicity (WCA-water contact angle), water vapor transmission rate (WVTR) and oxygen impermeability in pure CNC. WVTR and oxygen permeability were strongly dependent on relative humidity (RH). Interestingly, the greatest effect on WVTR was observed at RH = 90% in films containing CMC in proportions above 60%. CMC- and CNF-containing films had oxygen impermeability up to an RH level of 80% and 60%, respectively. The previous effects were confirmed by food packaging simulation tests, where CMC-containing films proved the best performers. The composite films studied were biodegradable—which constitutes a major environmental related advantage—to an extent proportional to their content in CMC or CNF. [Display omitted]
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2022.05.049