On a Stabilization Problem of Nonlinear Programming Neural Networks
Intrinsically, Lagrange multipliers in nonlinear programming algorithms play a regulating role in the process of searching optimal solution of constrained optimization problems. Hence, they can be regarded as the counterpart of control input variables in control systems. From this perspective, it is...
Saved in:
Published in | Neural processing letters Vol. 31; no. 2; pp. 93 - 103 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Boston
Springer US
01.04.2010
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1370-4621 1573-773X |
DOI | 10.1007/s11063-010-9129-x |
Cover
Loading…
Summary: | Intrinsically, Lagrange multipliers in nonlinear programming algorithms play a regulating role in the process of searching optimal solution of constrained optimization problems. Hence, they can be regarded as the counterpart of control input variables in control systems. From this perspective, it is demonstrated that constructing nonlinear programming neural networks may be formulated into solving servomechanism problems with unknown equilibrium point which coincides with optimal solution. In this paper, under second-order sufficient assumption of nonlinear programming problems, a dynamic output feedback control law analogous to that of nonlinear servomechanism problems is proposed to stabilize the corresponding nonlinear programming neural networks. Moreover, the asymptotical stability is shown by Lyapunov First Approximation Principle. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1370-4621 1573-773X |
DOI: | 10.1007/s11063-010-9129-x |