Transport mechanism of reverse surface leakage current in AlGaN/GaN high-electron mobility transistor with SiN passivation
The transport mechanism of reverse surface leakage current in the AlGaN/GaN high-electron mobility transistor(HEMT) becomes one of the most important reliability issues with the downscaling of feature size.In this paper,the research results show that the reverse surface leakage current in AlGaN/GaN...
Saved in:
Published in | Chinese physics B Vol. 24; no. 2; pp. 376 - 381 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.02.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The transport mechanism of reverse surface leakage current in the AlGaN/GaN high-electron mobility transistor(HEMT) becomes one of the most important reliability issues with the downscaling of feature size.In this paper,the research results show that the reverse surface leakage current in AlGaN/GaN HEMT with SiN passivation increases with the enhancement of temperature in the range from 298 K to 423 K.Three possible transport mechanisms are proposed and examined to explain the generation of reverse surface leakage current.By comparing the experimental data with the numerical transport models,it is found that neither Fowler-Nordheim tunneling nor Frenkel-Poole emission can describe the transport of reverse surface leakage current.However,good agreement is found between the experimental data and the two-dimensional variable range hopping(2D-VRH) model.Therefore,it is concluded that the reverse surface leakage current is dominated by the electron hopping through the surface states at the barrier layer.Moreover,the activation energy of surface leakage current is extracted,which is around 0.083 eV.Finally,the SiN passivated HEMT with a high Al composition and a thin AlGaN barrier layer is also studied.It is observed that 2D-VRH still dominates the reverse surface leakage current and the activation energy is around 0.10 eV,which demonstrates that the alteration of the AlGaN barrier layer does not affect the transport mechanism of reverse surface leakage current in this paper. |
---|---|
Bibliography: | Zheng Xue-Feng, Fan Shuang, Chen Yong-He, Kang Di, Zhang Jian-Kun, Wang Chong, Mo Jiang-Hui, Li Liang, Ma Xiao-Hua, Zhang Jin-Cheng, and Hao Yue( a) School of Microelectronics, Xidian University, Xi; an 710071, China; b) Key Laboratory of Wide Bandgap Semiconductor Materials and Devices, Xidian University, Xi'an 710071, China; c)National Key Laboratory of Application Specific Integrated Circuit (ASIC), Hebei Semiconductor Research Institute, Shijiazhuang 050051, China AlGaN/GaN HEMTs, reverse surface leakage current, transport mechanism, 2D-VRH 11-5639/O4 The transport mechanism of reverse surface leakage current in the AlGaN/GaN high-electron mobility transistor(HEMT) becomes one of the most important reliability issues with the downscaling of feature size.In this paper,the research results show that the reverse surface leakage current in AlGaN/GaN HEMT with SiN passivation increases with the enhancement of temperature in the range from 298 K to 423 K.Three possible transport mechanisms are proposed and examined to explain the generation of reverse surface leakage current.By comparing the experimental data with the numerical transport models,it is found that neither Fowler-Nordheim tunneling nor Frenkel-Poole emission can describe the transport of reverse surface leakage current.However,good agreement is found between the experimental data and the two-dimensional variable range hopping(2D-VRH) model.Therefore,it is concluded that the reverse surface leakage current is dominated by the electron hopping through the surface states at the barrier layer.Moreover,the activation energy of surface leakage current is extracted,which is around 0.083 eV.Finally,the SiN passivated HEMT with a high Al composition and a thin AlGaN barrier layer is also studied.It is observed that 2D-VRH still dominates the reverse surface leakage current and the activation energy is around 0.10 eV,which demonstrates that the alteration of the AlGaN barrier layer does not affect the transport mechanism of reverse surface leakage current in this paper. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1674-1056 2058-3834 1741-4199 |
DOI: | 10.1088/1674-1056/24/2/027302 |