LncRNA MALAT1-miR-339-5p-NIS axis is involved in the increased level of thyroid stimulating hormone (TSH) induced by combined exposure of high iodine and hyperlipidemia
•Combined exposure of high iodine and hyperlipidemia induced higher TSH in animal and human studies.•LncRNA and miRNA participated in hypothyroidism by regulating thyroid hormone synthesis.•LncRNA-MALAT1-miR-339-5p-NIS axis played important role in the elevated level of TSH. Hypothyroidism and subcl...
Saved in:
Published in | The Journal of nutritional biochemistry Vol. 131; p. 109672 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | •Combined exposure of high iodine and hyperlipidemia induced higher TSH in animal and human studies.•LncRNA and miRNA participated in hypothyroidism by regulating thyroid hormone synthesis.•LncRNA-MALAT1-miR-339-5p-NIS axis played important role in the elevated level of TSH.
Hypothyroidism and subclinical hypothyroidism were both characterized by elevated levels of thyroid stimulating hormone (TSH). Previous studies had found that high iodine or hyperlipidemia alone was associated with increased TSH level. However, their combined effects on TSH have not been elucidated. In this study, combination of high iodine and hyperlipidemia was established through the combined exposure of high-water iodine and high fat diet in Wistar rats. The results showed that combined exposure of high iodine and high fat can induce higher TSH level. The mRNA and protein levels of sodium iodide transporters (NIS) and type 1 deiodinase (D1) in thyroid tissues, which were crucial genes in the synthesis of thyroid hormones, decreased remarkably in combined exposure group. Mechanistically, down-regulated long non-coding RNA (lncRNA) metastasis associated in lung denocarcinoma transcript 1 (MALAT1) may regulate the expression of NIS by increasing miR-339-5p, and regulating D1 by increasing miR-224-5p. Then, the above findings were explored in subjects exposed to high water iodine and hyperlipidemia. The results indicated that in population combined with high iodine and hyperlipidemia, TSH level increased to higher level and lncRNA MALAT1-miR-339-5p-NIS axis was obviously activated. Collectively, this study found that combined exposure of high iodine and hyperlipidemia induced a higher level of TSH, and lncRNA MALAT1-miR-339-5p-NIS axis may play important role. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0955-2863 1873-4847 1873-4847 |
DOI: | 10.1016/j.jnutbio.2024.109672 |