Outdoor Inverse Rendering From a Single Image Using Multiview Self-Supervision

In this paper we show how to perform scene-level inverse rendering to recover shape, reflectance and lighting from a single, uncontrolled image using a fully convolutional neural network. The network takes an RGB image as input, regresses albedo, shadow and normal maps from which we infer least squa...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 44; no. 7; pp. 3659 - 3675
Main Authors Yu, Ye, Smith, William A. P.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper we show how to perform scene-level inverse rendering to recover shape, reflectance and lighting from a single, uncontrolled image using a fully convolutional neural network. The network takes an RGB image as input, regresses albedo, shadow and normal maps from which we infer least squares optimal spherical harmonic lighting coefficients. Our network is trained using large uncontrolled multiview and timelapse image collections without ground truth. By incorporating a differentiable renderer, our network can learn from self-supervision. Since the problem is ill-posed we introduce additional supervision. Our key insight is to perform offline multiview stereo (MVS) on images containing rich illumination variation. From the MVS pose and depth maps, we can cross project between overlapping views such that Siamese training can be used to ensure consistent estimation of photometric invariants. MVS depth also provides direct coarse supervision for normal map estimation. We believe this is the first attempt to use MVS supervision for learning inverse rendering. In addition, we learn a statistical natural illumination prior. We evaluate performance on inverse rendering, normal map estimation and intrinsic image decomposition benchmarks.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2021.3058105