Second-order differential equations with random perturbations and small parameters

We consider boundary-value problems for differential equations of second order containing a Brownian motion (random perturbation) and a small parameter and prove a special existence and uniqueness theorem for random solutions. We study the asymptotic behaviour of these solutions as the small paramet...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Royal Society of Edinburgh. Section A. Mathematics Vol. 147; no. 4; pp. 763 - 779
Main Authors Kamenskii, M., Pergamenchtchikov, S., Quincampoix, M.
Format Journal Article
LanguageEnglish
Published Edinburgh, UK Royal Society of Edinburgh Scotland Foundation 01.08.2017
Cambridge University Press
Royal Society of Edinburgh
Subjects
Online AccessGet full text
ISSN0308-2105
1473-7124
DOI10.1017/S0308210516000354

Cover

Loading…
More Information
Summary:We consider boundary-value problems for differential equations of second order containing a Brownian motion (random perturbation) and a small parameter and prove a special existence and uniqueness theorem for random solutions. We study the asymptotic behaviour of these solutions as the small parameter goes to zero and show the stochastic averaging theorem for such equations. We find the explicit limits for the solutions as the small parameter goes to zero.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0308-2105
1473-7124
DOI:10.1017/S0308210516000354