Optical codeword demodulation with error rates below the standard quantum limit using a conditional nulling receiver
The quantum states of two laser pulses—coherent states—are never mutually orthogonal, making perfect discrimination impossible. Even so, coherent states can achieve the ultimate quantum limit for capacity of a classical channel, the Holevo capacity. Attaining this requires the receiver to make joint...
Saved in:
Published in | Nature photonics Vol. 6; no. 6; pp. 374 - 379 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.06.2012
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The quantum states of two laser pulses—coherent states—are never mutually orthogonal, making perfect discrimination impossible. Even so, coherent states can achieve the ultimate quantum limit for capacity of a classical channel, the Holevo capacity. Attaining this requires the receiver to make joint-detection measurements on long codeword blocks, optical implementations of which remain unknown. Here, we report the first experimental demonstration of a joint-detection receiver, demodulating quaternary pulse-position-modulation codewords at a word error rate of up to 40% (2.2 dB) below that attained with direct detection, the largest error-rate improvement over the standard quantum limit reported to date. This is accomplished with a conditional nulling receiver, which uses optimized-amplitude coherent pulse nulling, single photon detection and quantum feedforward. We further show how this translates into coding complexity improvements for practical pulse-position-modulation systems, such as in deep-space communication. We anticipate our experiment to motivate future work towards building Holevo-capacity-achieving joint-detection receivers.
Researchers experimentally demonstrate the first joint-detection receiver capable of performing a joint measurement over pulse-position-modulation codewords. This result — the largest improvement over the standard quantum limit reported to date — is accomplished by using a conditional nulling receiver, which uses optimized-amplitude coherent pulse nulling, single-photon detection and quantum feedforward. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1749-4885 1749-4893 |
DOI: | 10.1038/nphoton.2012.113 |