Systemically administered mini α-crystallin peptide delays cataract progression in streptozotocin-induced diabetic rats

α-Crystallin in the mammalian eye lens composed of αA-Crystallin (αAC) and αB-Crystallin (αBC) subunits present in a 3:1 ratio. These proteins exhibit chaperone-like activity, helping to protect cells from various forms of stress. Specific sequences within αAC (70KFVIFLDVKHFSPEDLTVK88) and αBC (73DR...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. General subjects Vol. 1869; no. 7; p. 130814
Main Authors Savitikadi, Pandarinath, Dash, Lucky, Angadi, Kiran Kumar, Reddy, G. Bhanuprakash, Reddy, V. Sudhakar
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.06.2025
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:α-Crystallin in the mammalian eye lens composed of αA-Crystallin (αAC) and αB-Crystallin (αBC) subunits present in a 3:1 ratio. These proteins exhibit chaperone-like activity, helping to protect cells from various forms of stress. Specific sequences within αAC (70KFVIFLDVKHFSPEDLTVK88) and αBC (73DRFSVNLDVKHFSPEELKVK92) have been shown to possess effective chaperone and anti-apoptotic properties. However, their protective effects in diabetic cataract (DC) have not been explored. The current study explored the protective effects of systemically administered mini-αA and αBC peptides, both individually and in combination (3:1 ratio) against streptozotocin (STZ)-induced DC in rats. Hyperglycemia was induced in Sprague-Dawley rats through intraperitoneal (I.P.) injection of STZ, while control rats received PBS. Starting from the onset of cataract development, a group of diabetic rats was treated with mini-αA, or mini-αB, or their combination for four months via IP administration. Cataract progression and maturation were monitored using a slit lamp biomicroscope. To understand the underlying biochemical and molecular processes, we assessed changes in protein content, protein insolubilization, oxidative stress, endoplasmic reticulum (ER) stress, apoptotic cell death, and caspase-3 activity. Although the mini peptides did not prevent STZ-induced hyperglycemia, they delayed cataract progression in diabetic rats. Furthermore, mini peptides reduced protein aggregation and insolubilization, alleviated oxidative and ER stress, and mitigated hyperglycemia-induced apoptosis by lowering caspase-3 activity and Bax levels. This study demonstrates that systemic administration of mini α-crystallin peptides can delay DC progression by mitigating protein aggregation, oxidative stress, ER stress, and apoptosis. These findings suggest potential therapeutic applications for mini α-crystallin peptides in treating DC. •Systemic administration of mini α-crystallin peptides delay the diabetic cataract in rats.•Mini α-crystallin peptides reduce the formation of protein cross-links and high molecular weight aggregates in diabetic cataractous lens.•Mini α-crystallin peptides attenuate cellular stress (oxidative and endoplasmic reticulum stress)-induced by hyperglycemia.•Mini α-crystallin peptides protect the lens from hyperglycemia-induced apoptosis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0304-4165
1872-8006
1872-8006
DOI:10.1016/j.bbagen.2025.130814