Static analysis of ultra-thin beams based on a semi-continuum model

A linear semi-continuum model with discrete atomic layers in the thickness direction was developed to investigate the bending behaviors of ultra-thin beams with nanoscale thickness.The theoretical results show that the deflection of an ultra-thin beam may be enhanced or reduced due to different rela...

Full description

Saved in:
Bibliographic Details
Published inActa mechanica Sinica Vol. 27; no. 5; pp. 713 - 719
Main Authors Li, Cheng, Zheng, Zhi-Jun, Yu, Ji-Lin, Lim, C. W.
Format Journal Article
LanguageEnglish
Published Heidelberg The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences 01.10.2011
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A linear semi-continuum model with discrete atomic layers in the thickness direction was developed to investigate the bending behaviors of ultra-thin beams with nanoscale thickness.The theoretical results show that the deflection of an ultra-thin beam may be enhanced or reduced due to different relaxation coefficients.If the relaxation coefficient is greater/less than one,the deflection of micro/nano-scale structures is enhanced/reduced in comparison with macro-scale structures.So,two opposite types of size-dependent behaviors are observed and they are mainly caused by the relaxation coefficients.Comparisons with the classical continuum model,exact nonlocal stress model and finite element model (FEM) verify the validity of the present semi-continuum model.In particular,an explanation is proposed in the debate whether the bending stiffness of a micro/nano-scale beam should be greater or weaker as compared with the macro-scale structures.The characteristics of bending stiffness are proved to be associated with the relaxation coefficients.
Bibliography:A linear semi-continuum model with discrete atomic layers in the thickness direction was developed to investigate the bending behaviors of ultra-thin beams with nanoscale thickness.The theoretical results show that the deflection of an ultra-thin beam may be enhanced or reduced due to different relaxation coefficients.If the relaxation coefficient is greater/less than one,the deflection of micro/nano-scale structures is enhanced/reduced in comparison with macro-scale structures.So,two opposite types of size-dependent behaviors are observed and they are mainly caused by the relaxation coefficients.Comparisons with the classical continuum model,exact nonlocal stress model and finite element model (FEM) verify the validity of the present semi-continuum model.In particular,an explanation is proposed in the debate whether the bending stiffness of a micro/nano-scale beam should be greater or weaker as compared with the macro-scale structures.The characteristics of bending stiffness are proved to be associated with the relaxation coefficients.
11-2063/O3
Bending stiffness · MEMS/NEMS · Relaxation coefficient · Semi-continuum model · Size-dependence
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0567-7718
1614-3116
DOI:10.1007/s10409-011-0453-9