Learning the sound inventory of a complex vocal skill via an intrinsic reward
Reinforcement learning (RL) is thought to underlie the acquisition of vocal skills like birdsong and speech, where sounding like one's "tutor" is rewarding. However, what RL strategy generates the rich sound inventories for song or speech? We find that the standard actor-critic model...
Saved in:
Published in | Science advances Vol. 10; no. 13; p. eadj3824 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for the Advancement of Science
29.03.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Reinforcement learning (RL) is thought to underlie the acquisition of vocal skills like birdsong and speech, where sounding like one's "tutor" is rewarding. However, what RL strategy generates the rich sound inventories for song or speech? We find that the standard actor-critic model of birdsong learning fails to explain juvenile zebra finches' efficient learning of multiple syllables. However, when we replace a single actor with multiple independent actors that jointly maximize a common intrinsic reward, then birds' empirical learning trajectories are accurately reproduced. The influence of each actor (syllable) on the magnitude of global reward is competitively determined by its acoustic similarity to target syllables. This leads to each actor matching the target it is closest to and, occasionally, to the competitive exclusion of an actor from the learning process (i.e., the learned song). We propose that a competitive-cooperative multi-actor RL (MARL) algorithm is key for the efficient learning of the action inventory of a complex skill. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ISSN: | 2375-2548 2375-2548 |
DOI: | 10.1126/sciadv.adj3824 |