Mixed-Precision Kernel Recursive Least Squares

Kernel recursive least squares (KRLS) is a widely used online machine learning algorithm for time series predictions. In this article, we present the mixed-precision KRLS, producing equivalent prediction accuracy to double-precision KRLS with a higher training throughput and a lower memory footprint...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 33; no. 3; pp. 1284 - 1298
Main Authors Lee, JunKyu, Nikolopoulos, Dimitrios S., Vandierendonck, Hans
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Kernel recursive least squares (KRLS) is a widely used online machine learning algorithm for time series predictions. In this article, we present the mixed-precision KRLS, producing equivalent prediction accuracy to double-precision KRLS with a higher training throughput and a lower memory footprint. The mixed-precision KRLS applies single-precision arithmetic to the computation components being not only numerically resilient but also computationally intensive. Our mixed-precision KRLS demonstrates the 1.32, 1.15, 1.29, 1.09, and <inline-formula> <tex-math notation="LaTeX">1.08\times </tex-math></inline-formula> training throughput improvements using 24.95%, 24.74%, 24.89%, 24.48%, and 24.20% less memory footprint without losing any prediction accuracy compared to double-precision KRLS for a 3-D nonlinear regression, a Lorenz chaotic time series, a Mackey-Glass chaotic time series, a sunspot number time series, and a sea surface temperature time series, respectively.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2162-237X
2162-2388
DOI:10.1109/TNNLS.2020.3041677