Adaptive neuro‐fuzzy inference system approach for urban sustainability assessment: A China case study
Urbanization, especially in developing countries, has led to numerous concerns, such as air pollution, traffic congestion and habitat destruction. Within this context, it is important to evaluate urban development as sustainable, and various sustainability assessment methods have been developed, inc...
Saved in:
Published in | Sustainable development (Bradford, West Yorkshire, England) Vol. 26; no. 6; pp. 749 - 764 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Chichester
Wiley Periodicals Inc
01.11.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Urbanization, especially in developing countries, has led to numerous concerns, such as air pollution, traffic congestion and habitat destruction. Within this context, it is important to evaluate urban development as sustainable, and various sustainability assessment methods have been developed, including fuzzy logic approaches. However, predefined fuzzy rules and simple linear membership functions were used, which are largely based on the knowledge of subject experts. Therefore, this paper aims to introduce an adaptive neuro‐fuzzy inference systems (ANFIS) approach for urban sustainability assessment. With collected training samples from the Urban China Initiative, and the ANFIS approach was used to rank 185 selected cities in China. The results show that the ANFIS approach is appropriate for assessing urban sustainability, and the nonlinear membership functions fit the training samples better than the linear membership functions. Further discussion indicates that future research on sustainability assessment should be more integrated. |
---|---|
Bibliography: | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3 |
ISSN: | 0968-0802 1099-1719 |
DOI: | 10.1002/sd.1744 |