Partially coherent Gaussian-Schell model pulse beam propagation in slant atmospheric turbulence

Based on the extended Huygens-Fresnel principle, a two-frequency, two-point cross-spectral density function of partially coherent Gaussian-Schell model pulse (GSMP) beam propagation in slant atmospheric turbulence is derived. Using the Markov approximation method and on the assumption that (w1 - w2)...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 23; no. 6; pp. 295 - 303
Main Author 李亚清 吴振森 王明军
Format Journal Article
LanguageEnglish
Published 01.06.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Based on the extended Huygens-Fresnel principle, a two-frequency, two-point cross-spectral density function of partially coherent Gaussian-Schell model pulse (GSMP) beam propagation in slant atmospheric turbulence is derived. Using the Markov approximation method and on the assumption that (w1 - w2)/(w1 + w2) ≤ 1, the theory obtained is valid for turbulence of any strength and can be applied to narrow-band signals. The expressions for average beam intensity, the beam size, and the two-frequency complex degree of coherence of a GSMP beam are obtained. The numerical results are presented, and the effects of the frequency, initial pulse width, initial beam radius, zenith angle, and outer scales on the complex degree of coherence are discussed. This study provides a better understanding of the second-order statistics of a GSMP beam propagating through atmospheric turbulence in the space-frequency domain.
Bibliography:atmospheric propagation, partial coherence, atmospheric turbulence
Based on the extended Huygens-Fresnel principle, a two-frequency, two-point cross-spectral density function of partially coherent Gaussian-Schell model pulse (GSMP) beam propagation in slant atmospheric turbulence is derived. Using the Markov approximation method and on the assumption that (w1 - w2)/(w1 + w2) ≤ 1, the theory obtained is valid for turbulence of any strength and can be applied to narrow-band signals. The expressions for average beam intensity, the beam size, and the two-frequency complex degree of coherence of a GSMP beam are obtained. The numerical results are presented, and the effects of the frequency, initial pulse width, initial beam radius, zenith angle, and outer scales on the complex degree of coherence are discussed. This study provides a better understanding of the second-order statistics of a GSMP beam propagating through atmospheric turbulence in the space-frequency domain.
11-5639/O4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/23/6/064216