Laser-assisted homogeneous charge ignition in a constant volume combustion chamber
Homogeneous charge compression ignition (HCCI) is a very promising future combustion concept for internal combustion engines. There are several technical difficulties associated with this concept, and precisely controlling the start of auto-ignition is the most prominent of them. In this paper, a no...
Saved in:
Published in | Optics and lasers in engineering Vol. 47; no. 6; pp. 680 - 685 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.06.2009
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Homogeneous charge compression ignition (HCCI) is a very promising future combustion concept for internal combustion engines. There are several technical difficulties associated with this concept, and precisely controlling the start of auto-ignition is the most prominent of them. In this paper, a novel concept to control the start of auto-ignition is presented. The concept is based on the fact that most HCCI engines are operated with high exhaust gas recirculation (EGR) rates in order to slow-down the fast combustion processes. Recirculated exhaust gas contains combustion products including moisture, which has a relative peak of the absorption coefficient around 3
μm. These water molecules absorb the incident erbium laser radiations (
λ=2.79
μm) and get heated up to expedite ignition. In the present experimental work, auto-ignition conditions are locally attained in an experimental constant volume combustion chamber under simulated EGR conditions. Taking advantage of this feature, the time when the mixture is thought to “auto-ignite” could be adjusted/controlled by the laser pulse width optimisation, followed by its resonant absorption by water molecules present in recirculated exhaust gas. |
---|---|
ISSN: | 0143-8166 1873-0302 |
DOI: | 10.1016/j.optlaseng.2008.12.002 |