Declines in soil carbon storage under no tillage can be alleviated in the long run

•In the early years of adoption, no-tillage (NT) increased surface SOC and reduced it in deeper layers.•NT-driven SOC losses diminished over time and the net change was approaching zero at 14 years.•Annual precipitation and initial SOC were the most influential variables on the effect of NT on SOC....

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 425; p. 116028
Main Authors Cai, Andong, Han, Tianfu, Ren, Tianjing, Sanderman, Jonathan, Rui, Yichao, Wang, Bin, Smith, Pete, Xu, Minggang, Li, Yu'e
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2022
Subjects
Online AccessGet full text
ISSN0016-7061
1872-6259
DOI10.1016/j.geoderma.2022.116028

Cover

Loading…
Abstract •In the early years of adoption, no-tillage (NT) increased surface SOC and reduced it in deeper layers.•NT-driven SOC losses diminished over time and the net change was approaching zero at 14 years.•Annual precipitation and initial SOC were the most influential variables on the effect of NT on SOC. Improved management of agricultural soils plays a critical role in mitigating climate change. We studied the temporal effects of the adoption of no-tillage (NT) management, often touted as an important carbon sequestration strategy, on soil organic carbon (SOC) storage in surface and subsurface soil layers by performing a meta-analysis of 1061 pairs of published experimental data comparing NT and conventional tillage (CT). In the early years of adoption, NT increased surface (0–10 cm) SOC storage compared to CT but reduced it in deeper layers leading to a decrease of SOC in the entire soil profile. These NT-driven SOC losses diminished over time and the net change was approaching zero at 14 years. Our findings demonstrate that NT is not a simple guaranteed solution for drawing down atmospheric CO2 and regenerating the lost SOC in cropping soils globally and highlight the importance of long-term NT for the recovery of initial SOC losses.
AbstractList •In the early years of adoption, no-tillage (NT) increased surface SOC and reduced it in deeper layers.•NT-driven SOC losses diminished over time and the net change was approaching zero at 14 years.•Annual precipitation and initial SOC were the most influential variables on the effect of NT on SOC. Improved management of agricultural soils plays a critical role in mitigating climate change. We studied the temporal effects of the adoption of no-tillage (NT) management, often touted as an important carbon sequestration strategy, on soil organic carbon (SOC) storage in surface and subsurface soil layers by performing a meta-analysis of 1061 pairs of published experimental data comparing NT and conventional tillage (CT). In the early years of adoption, NT increased surface (0–10 cm) SOC storage compared to CT but reduced it in deeper layers leading to a decrease of SOC in the entire soil profile. These NT-driven SOC losses diminished over time and the net change was approaching zero at 14 years. Our findings demonstrate that NT is not a simple guaranteed solution for drawing down atmospheric CO2 and regenerating the lost SOC in cropping soils globally and highlight the importance of long-term NT for the recovery of initial SOC losses.
Improved management of agricultural soils plays a critical role in mitigating climate change. We studied the temporal effects of the adoption of no-tillage (NT) management, often touted as an important carbon sequestration strategy, on soil organic carbon (SOC) storage in surface and subsurface soil layers by performing a meta-analysis of 1061 pairs of published experimental data comparing NT and conventional tillage (CT). In the early years of adoption, NT increased surface (0–10 cm) SOC storage compared to CT but reduced it in deeper layers leading to a decrease of SOC in the entire soil profile. These NT-driven SOC losses diminished over time and the net change was approaching zero at 14 years. Our findings demonstrate that NT is not a simple guaranteed solution for drawing down atmospheric CO₂ and regenerating the lost SOC in cropping soils globally and highlight the importance of long-term NT for the recovery of initial SOC losses.
ArticleNumber 116028
Author Li, Yu'e
Cai, Andong
Xu, Minggang
Smith, Pete
Rui, Yichao
Ren, Tianjing
Han, Tianfu
Sanderman, Jonathan
Wang, Bin
Author_xml – sequence: 1
  givenname: Andong
  orcidid: 0000-0001-6853-7558
  surname: Cai
  fullname: Cai, Andong
  organization: Key Laboratory of Agricultural Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
– sequence: 2
  givenname: Tianfu
  surname: Han
  fullname: Han, Tianfu
  organization: Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
– sequence: 3
  givenname: Tianjing
  surname: Ren
  fullname: Ren, Tianjing
  organization: Key Laboratory of Agricultural Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
– sequence: 4
  givenname: Jonathan
  surname: Sanderman
  fullname: Sanderman, Jonathan
  organization: Woods Hole Research Center, Falmouth, MA, USA
– sequence: 5
  givenname: Yichao
  surname: Rui
  fullname: Rui, Yichao
  organization: Department of Soil Science, University of Wisconsin-Madison, Madison, WI 53706, USA
– sequence: 6
  givenname: Bin
  surname: Wang
  fullname: Wang, Bin
  organization: Key Laboratory of Agricultural Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
– sequence: 7
  givenname: Pete
  surname: Smith
  fullname: Smith, Pete
  organization: Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
– sequence: 8
  givenname: Minggang
  surname: Xu
  fullname: Xu, Minggang
  organization: Shanxi Province Key Laboratory of Soil Environment and Nutrient Resources, Engineer and Technology Academy of Ecology and Environment, Shanxi Agricultural University, Taiyuan 030031, China
– sequence: 9
  givenname: Yu'e
  surname: Li
  fullname: Li, Yu'e
  email: liyue@caas.cn
  organization: Key Laboratory of Agricultural Environment, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
BookMark eNqFkE1LAzEQhoMo2Kp_QXL0sjXJdjcpeFD8hoIgeg7Z2dmakiaapAX_vSnVi5eeJhPe52V4xuTQB4-EnHM24Yy3l8vJAkOPcWUmggkx4bxlQh2QEVdSVK1oZodkxEqykqzlx2Sc0rKskgk2Iq93CM56TNR6moJ1FEzsQnnnEM0C6dqXauoDzda57QcYTzukxjncWJOx35L5A6kLfkHj2p-So8G4hGe_84S8P9y_3T5V85fH59ubeQX1tMlVN6hhyrCua1AoZpLVQjaglDLGdHyooWcC2ganihvk0HR9D3IwknUGYTaT9Qm52PV-xvC1xpT1yibAcqXHsE5aSK5EUaBEiba7KMSQUsRBf0a7MvFbc6a3EvVS_0nUW4l6J7GAV_9AsNlkG3yOxrr9-PUOx-JhYzHqBBY9YG8jQtZ9sPsqfgDlPZSm
CitedBy_id crossref_primary_10_1016_j_agee_2025_109555
crossref_primary_10_1016_j_scitotenv_2023_169169
crossref_primary_10_1021_acs_est_4c01882
crossref_primary_10_1016_j_iswcr_2022_07_004
crossref_primary_10_1021_acsengineeringau_3c00031
crossref_primary_10_3389_fpls_2022_975169
crossref_primary_10_1029_2023EF003866
crossref_primary_10_3390_agriculture14081290
crossref_primary_10_1016_j_geodrs_2023_e00678
crossref_primary_10_1016_j_still_2024_106379
crossref_primary_10_1016_j_still_2023_105786
crossref_primary_10_1016_j_still_2024_106211
crossref_primary_10_59717_j_xinn_geo_2023_100015
crossref_primary_10_1016_j_geodrs_2024_e00818
crossref_primary_10_1007_s11367_024_02398_4
crossref_primary_10_1111_gcb_16491
crossref_primary_10_1139_cjss_2023_0118
crossref_primary_10_1146_annurev_ecolsys_102320_085332
crossref_primary_10_3390_land12081630
crossref_primary_10_1007_s10533_023_01097_w
crossref_primary_10_1016_j_scib_2024_03_021
crossref_primary_10_1002_ldr_4776
crossref_primary_10_1088_1748_9326_ad601a
crossref_primary_10_1016_j_still_2024_106021
crossref_primary_10_1016_j_catena_2023_107509
crossref_primary_10_3389_fsufs_2023_1205510
crossref_primary_10_1016_j_eja_2023_126912
crossref_primary_10_5194_soil_10_151_2024
crossref_primary_10_1016_j_gecco_2023_e02555
crossref_primary_10_1016_j_still_2024_106108
crossref_primary_10_1016_j_still_2024_106427
crossref_primary_10_1016_j_scitotenv_2022_158339
crossref_primary_10_3390_su16104157
crossref_primary_10_1186_s13021_024_00249_1
crossref_primary_10_1007_s42729_024_02064_6
crossref_primary_10_1016_j_isci_2023_106028
crossref_primary_10_1016_j_envpol_2024_124567
crossref_primary_10_1007_s10533_022_00981_1
crossref_primary_10_1080_17583004_2023_2268071
crossref_primary_10_1016_j_still_2024_106353
crossref_primary_10_1016_j_still_2025_106496
crossref_primary_10_1016_j_still_2024_106310
crossref_primary_10_1016_j_geoderma_2022_116308
crossref_primary_10_1038_s43016_024_01001_1
crossref_primary_10_1016_j_fcr_2025_109854
crossref_primary_10_1016_j_geoderma_2022_116307
crossref_primary_10_1016_j_agee_2024_109080
crossref_primary_10_1038_s41598_023_41307_x
crossref_primary_10_1111_ejss_13536
Cites_doi 10.1111/j.1529-8817.2003.00730.x
10.1111/gcb.15001
10.1038/nclimate2292
10.1111/j.1365-2486.2008.01743.x
10.1111/gcb.14658
10.1073/pnas.1706103114
10.1111/gcb.15080
10.1016/j.still.2008.02.001
10.1111/gcb.15968
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2022.116028
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
ExternalDocumentID 10_1016_j_geoderma_2022_116028
S0016706122003354
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
RIG
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
L.6
ID FETCH-LOGICAL-c345t-bf8f40e333c8e29703275c888aaab1f3cd02c65e481ae1c5bddc7fa70baec9973
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Thu Jul 10 19:09:23 EDT 2025
Tue Jul 01 04:04:58 EDT 2025
Thu Apr 24 23:02:23 EDT 2025
Fri Feb 23 02:40:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords No-tillage
Soil profile
Conventional tillage
Time series
Soil carbon
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-bf8f40e333c8e29703275c888aaab1f3cd02c65e481ae1c5bddc7fa70baec9973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6853-7558
PQID 2718287282
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2718287282
crossref_primary_10_1016_j_geoderma_2022_116028
crossref_citationtrail_10_1016_j_geoderma_2022_116028
elsevier_sciencedirect_doi_10_1016_j_geoderma_2022_116028
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
2022-11-00
20221101
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Geoderma
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Martínez, Fuentes, Silva, Valle, Acevedo (b0025) 2008; 99
Sanderman, Hengl, Fiske (b0035) 2017; 114
Six, Ogle, Jaybreidt, Conant, Mosier, Paustian (b0040) 2004; 10
Lu, Wang, Han, Ouyang, Duan, Zheng, Miao (b0020) 2009; 15
Sun, Canadell, Yu, Yu, Zhang, Smith, Fischer, Huang (b0045) 2020; 26
Cusser, Bahlai, Swinton, Robertson, Haddad (b0010) 2020; 26
Bai, Huang, Ren, Coyne, Jacinthe, Tao, Hui, Yang, Matocha (b0005) 2019; 25
Kan, Liu, Liu, Lal, Dang, Zhao, Zhang (b0015) 2021; 28
Tubiello, Conchedda (b0050) 2021; 1
Powlson, Stirling, Jat, Gerard, Palm, Sanchez, Cassman (b0030) 2014; 4
Cusser (10.1016/j.geoderma.2022.116028_b0010) 2020; 26
Lu (10.1016/j.geoderma.2022.116028_b0020) 2009; 15
Sanderman (10.1016/j.geoderma.2022.116028_b0035) 2017; 114
Martínez (10.1016/j.geoderma.2022.116028_b0025) 2008; 99
Sun (10.1016/j.geoderma.2022.116028_b0045) 2020; 26
Powlson (10.1016/j.geoderma.2022.116028_b0030) 2014; 4
Six (10.1016/j.geoderma.2022.116028_b0040) 2004; 10
Bai (10.1016/j.geoderma.2022.116028_b0005) 2019; 25
Kan (10.1016/j.geoderma.2022.116028_b0015) 2021; 28
Tubiello (10.1016/j.geoderma.2022.116028_b0050) 2021; 1
References_xml – volume: 99
  start-page: 232
  year: 2008
  end-page: 244
  ident: b0025
  article-title: Soil physical properties and wheat root growth as affected by no-tillage and conventional tillage systems in a Mediterranean environment of Chile
  publication-title: Soil Till. Res.
– volume: 28
  start-page: 693
  year: 2021
  end-page: 710
  ident: b0015
  article-title: Mechanisms of soil organic carbon stability and its response to no-till: A global synthesis and perspective
  publication-title: Glob. Change Biol.
– volume: 26
  start-page: 3325
  year: 2020
  end-page: 3335
  ident: b0045
  article-title: Climate drives global soil carbon sequestration and crop yield changes under conservation agriculture
  publication-title: Glob. Change Biol.
– volume: 10
  start-page: 155
  year: 2004
  end-page: 160
  ident: b0040
  article-title: The potential to mitigate global warming with no-tillage management is only realized when practised in the long term
  publication-title: Glob. Change Biol.
– volume: 25
  start-page: 2591
  year: 2019
  end-page: 2606
  ident: b0005
  article-title: Responses of soil carbon sequestration to climate-smart agriculture practices: A meta-analysis
  publication-title: Glob. Change Biol.
– volume: 26
  start-page: 3715
  year: 2020
  end-page: 3725
  ident: b0010
  article-title: Long-term research avoids spurious and misleading trends in sustainability attributes of no-till
  publication-title: Glob. Change Biol.
– volume: 1
  year: 2021
  ident: b0050
  article-title: Emissions due to agriculture. Global, regional and country trends 1990–2018
  publication-title: FAO Food Nutrition Paper
– volume: 114
  start-page: 9575
  year: 2017
  end-page: 9580
  ident: b0035
  article-title: Soil carbon debt of 12,000 years of human land use
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 15
  start-page: 281
  year: 2009
  end-page: 305
  ident: b0020
  article-title: Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China's cropland
  publication-title: Glob. Change Biol.
– volume: 4
  start-page: 678
  year: 2014
  end-page: 683
  ident: b0030
  article-title: Limited potential of no-till agriculture for climate change mitigation
  publication-title: Nat. Clim. Change
– volume: 10
  start-page: 155
  issue: 2
  year: 2004
  ident: 10.1016/j.geoderma.2022.116028_b0040
  article-title: The potential to mitigate global warming with no-tillage management is only realized when practised in the long term
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1529-8817.2003.00730.x
– volume: 26
  start-page: 3325
  issue: 6
  year: 2020
  ident: 10.1016/j.geoderma.2022.116028_b0045
  article-title: Climate drives global soil carbon sequestration and crop yield changes under conservation agriculture
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.15001
– volume: 4
  start-page: 678
  issue: 8
  year: 2014
  ident: 10.1016/j.geoderma.2022.116028_b0030
  article-title: Limited potential of no-till agriculture for climate change mitigation
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate2292
– volume: 15
  start-page: 281
  issue: 2
  year: 2009
  ident: 10.1016/j.geoderma.2022.116028_b0020
  article-title: Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China's cropland
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2008.01743.x
– volume: 25
  start-page: 2591
  issue: 8
  year: 2019
  ident: 10.1016/j.geoderma.2022.116028_b0005
  article-title: Responses of soil carbon sequestration to climate-smart agriculture practices: A meta-analysis
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.14658
– volume: 114
  start-page: 9575
  issue: 36
  year: 2017
  ident: 10.1016/j.geoderma.2022.116028_b0035
  article-title: Soil carbon debt of 12,000 years of human land use
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1706103114
– volume: 1
  issue: 18
  year: 2021
  ident: 10.1016/j.geoderma.2022.116028_b0050
  article-title: Emissions due to agriculture. Global, regional and country trends 1990–2018
  publication-title: FAO Food Nutrition Paper
– volume: 26
  start-page: 3715
  issue: 6
  year: 2020
  ident: 10.1016/j.geoderma.2022.116028_b0010
  article-title: Long-term research avoids spurious and misleading trends in sustainability attributes of no-till
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.15080
– volume: 99
  start-page: 232
  issue: 2
  year: 2008
  ident: 10.1016/j.geoderma.2022.116028_b0025
  article-title: Soil physical properties and wheat root growth as affected by no-tillage and conventional tillage systems in a Mediterranean environment of Chile
  publication-title: Soil Till. Res.
  doi: 10.1016/j.still.2008.02.001
– volume: 28
  start-page: 693
  issue: 3
  year: 2021
  ident: 10.1016/j.geoderma.2022.116028_b0015
  article-title: Mechanisms of soil organic carbon stability and its response to no-till: A global synthesis and perspective
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.15968
SSID ssj0017020
Score 2.592105
Snippet •In the early years of adoption, no-tillage (NT) increased surface SOC and reduced it in deeper layers.•NT-driven SOC losses diminished over time and the net...
Improved management of agricultural soils plays a critical role in mitigating climate change. We studied the temporal effects of the adoption of no-tillage...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 116028
SubjectTerms carbon dioxide
carbon sequestration
climate change
Conventional tillage
meta-analysis
No-tillage
Soil carbon
soil organic carbon
Soil profile
soil profiles
subsurface soil layers
Time series
Title Declines in soil carbon storage under no tillage can be alleviated in the long run
URI https://dx.doi.org/10.1016/j.geoderma.2022.116028
https://www.proquest.com/docview/2718287282
Volume 425
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kXvQgPvFZVvAam2Sz2eRYqlIVPIiCt2V3M5GWkpS09ehvdyYPURE8eEtCJoSZ3W9mkplvGLswFCdbMJ7I6dNNFCnP-qn1lEmsTfNMCairfB_i8XN09yJf1tio64WhssoW-xtMr9G6vTJotTmYTybU4xvEijw01VcJSZygxF6Ha_ry_bPMI1B-S80YxB7d_aVLeIo2ooFjNf9QGCJ6xD5NZf_dQf2A6tr_3GyzrTZw5MPm3XbYGhS7bHP4WrXkGbDHHq-AGh1hwScFX5STGXemsiUeY2KNuMGpYaziRcmXNGsIL6BeuQVO81Te0EaQkSSGhHxWFq-8WhX77Pnm-mk09tqZCZ4TkVx6Nk_yyAchhEsgTHE_h0o6THONMTbIhcv80MUSoiQwEDhps8yp3CjfGnBpqsQB6xVlAYeMuwyS1GE4hzFdJG1qpFPKT6LMT1xoITtislOUdi2hOM21mOmucmyqOwVrUrBuFHzEBp9y84ZS40-JtLOD_rY4NOL-n7LnneE07hz6HWIKKFcLHaJbxnwRc87jfzz_hG3QWdOeeMp6y2oFZxinLG2_Xoh9tj68vR8_fACRmehb
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7SzaHtoaQvmrZJVejVrG1Jln1c0oZNk-6hJJCbkORx2LDYwbvb39-ZtRzaUsghN2MzxnwjfTNjzQPgi2M_2aNLZMO_bpQyiU8rnxhXel81tZG4y_JdFPMr9f1aX-_ByVgLw2mVkfsHTt-xdbwzjWhO75ZLrvHNCsMWmvOrpFZPYJ-7U6kJ7M_OzueL-8MEk8bujFmRsMAfhcK3pCaeObZrQZTnRCBFyoPZ_2-j_mHrnQk6PYAX0XcUs-HzXsIetq_g-eymj_0z8DX8_Ipc64hrsWzFuluuRHC97-iaYmuiDsE1Y71oO7HhcUN0g6AVHgWPVPlFasKaJckrFKuuvRH9tn0DV6ffLk_mSRybkASp9CbxTdmoFKWUocS8oi2dGx0o0nXO-ayRoU7zUGhUZeYwC9rXdTCNM6l3GKrKyLcwabsW34EINZZVII-O3DqlfeV0MCYtVZ2WIfdYH4IegbIh9hTn0RYrOyaP3doRYMsA2wHgQ5jey90NXTUelKhGPdi_1ocl6n9Q9vOoOEubh09EXIvddm1zsswUMlLY-f4R7_8ET-eXPy7sxdni_AM84ydDteJHmGz6LR6R27Lxx3FZ_gaMXOsM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Declines+in+soil+carbon+storage+under+no+tillage+can+be+alleviated+in+the+long+run&rft.jtitle=Geoderma&rft.au=Cai%2C+Andong&rft.au=Han%2C+Tianfu&rft.au=Ren%2C+Tianjing&rft.au=Sanderman%2C+Jonathan&rft.date=2022-11-01&rft.issn=0016-7061&rft.volume=425+p.116028-&rft_id=info:doi/10.1016%2Fj.geoderma.2022.116028&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon