Carbon nanotube-cuprous oxide composite based pressure sensors

In this paper, we present the design, the fabrication, and the experimental results of carbon nanotube (CNT) and Cu20 composite based pressure sensors. The pressed tablets of the CNT Cu20 composite are fabricated at a pressure of 353 MPa. The diameters of the multiwalled nanotubes (MWNTs) are betwee...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 21; no. 1; pp. 329 - 333
Main Authors Karimov, Kh. S., Chani, Muhammad Tariq Saeed, Khalid, Fazal Ahmad, Khan, Adam, Khan, Rahim
Format Journal Article
LanguageEnglish
Published 2012
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we present the design, the fabrication, and the experimental results of carbon nanotube (CNT) and Cu20 composite based pressure sensors. The pressed tablets of the CNT Cu20 composite are fabricated at a pressure of 353 MPa. The diameters of the multiwalled nanotubes (MWNTs) are between 10 nm and 30 nm. The sizes of the Cu20 micro particles are in the range of 3-4 μm. The average diameter and the average thickness of the pressed tablets are 10 mm and 4.0 mm, respectively. In order to make low resistance electric contacts, the two sides of the pressed tablet are covered by silver pastes. The direct current resistance of the pressure sensor decreases by 3.3 times as the pressure increases up to 37 kN/m^2. The simulation result of the resistance-pressure relationship is in good agreement with the experimental result within a variation of ±2%.
Bibliography:carbon nanotubes, Cu20 micro-powder, pressure sensor, simulation
11-5639/O4
In this paper, we present the design, the fabrication, and the experimental results of carbon nanotube (CNT) and Cu20 composite based pressure sensors. The pressed tablets of the CNT Cu20 composite are fabricated at a pressure of 353 MPa. The diameters of the multiwalled nanotubes (MWNTs) are between 10 nm and 30 nm. The sizes of the Cu20 micro particles are in the range of 3-4 μm. The average diameter and the average thickness of the pressed tablets are 10 mm and 4.0 mm, respectively. In order to make low resistance electric contacts, the two sides of the pressed tablet are covered by silver pastes. The direct current resistance of the pressure sensor decreases by 3.3 times as the pressure increases up to 37 kN/m^2. The simulation result of the resistance-pressure relationship is in good agreement with the experimental result within a variation of ±2%.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/21/1/016102