Virus spreading in wireless sensor networks with a medium access control mechanism
In this paper, an extended version of standard susceptible-infected (SI) model is proposed to consider the influence of a medium access control mechanism on virus spreading in wireless sensor networks. Theoretical analysis shows that the medium access control mechanism obviously reduces the density...
Saved in:
Published in | Chinese physics B Vol. 22; no. 4; pp. 70 - 74 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.04.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, an extended version of standard susceptible-infected (SI) model is proposed to consider the influence of a medium access control mechanism on virus spreading in wireless sensor networks. Theoretical analysis shows that the medium access control mechanism obviously reduces the density of infected nodes in the networks, which has been ignored in previous studies. It is also found that by increasing the network node density or node communication radius greatly increases the number of infected nodes. The theoretical results are confirmed by numerical simulations. |
---|---|
Bibliography: | Wang Ya-Qi Yang Xiao-Yuan (Network and Information Security Key Laboratory of Armed Police Force, Department of Electronics Technology, Engineering University of the Chinese People’s Armed Police Force, Xi’an 710086, China) wireless sensor networks; medium access control; virus spreading; susceptible-infected model 11-5639/O4 In this paper, an extended version of standard susceptible-infected (SI) model is proposed to consider the influence of a medium access control mechanism on virus spreading in wireless sensor networks. Theoretical analysis shows that the medium access control mechanism obviously reduces the density of infected nodes in the networks, which has been ignored in previous studies. It is also found that by increasing the network node density or node communication radius greatly increases the number of infected nodes. The theoretical results are confirmed by numerical simulations. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1674-1056 2058-3834 1741-4199 |
DOI: | 10.1088/1674-1056/22/4/040206 |