Characterization of the inhibitory effects of erythromycin and clarithromycin on the HERG potassium channel

Both erythromycin and clarithromycin have been reported to cause QT prolongation and the cardiac arrhythmia torsade de pointes in humans, however direct evidence documenting that these drugs produce this effect by blocking human cardiac ion channels is lacking. The goal of this study was to test the...

Full description

Saved in:
Bibliographic Details
Published inMolecular and cellular biochemistry Vol. 254; no. 1-2; pp. 1 - 7
Main Authors Stanat, Scott J.C., Carlton, Carol G., Crumb, William J., Agrawal, Krishna C., Clarkson, Craig W.
Format Journal Article
LanguageEnglish
Published Netherlands Springer Nature B.V 01.12.2003
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Both erythromycin and clarithromycin have been reported to cause QT prolongation and the cardiac arrhythmia torsade de pointes in humans, however direct evidence documenting that these drugs produce this effect by blocking human cardiac ion channels is lacking. The goal of this study was to test the hypothesis that these macrolide antibiotics significantly block the delayed rectifier current (IKr) encoded by HERG (the human ether-a-go-go-related gene) at drug concentrations, temperature and ionic conditions mimicking those occurring in human subjects. Potassium currents in HEK 293 cells stably transfected with HERG were recorded using a whole cell voltage clamp method. Exposure of cells to erythromycin reduced the HERG encoded potassium current in a concentration dependent manner with an IC50 of 38.9 +/- 1.2 microM and Hill Slope factor of 0.4 +/- 0.1. Clarithromycin produced a similar concentration-dependent block with an IC50 of 45.7 +/- 1.1 microM and Hill Slope factor of 1.0 +/- 0.1. Erythromycin (25-250 microM) and clarithromycin (5 or 25 microM) also produced a significant decrease in the integral of the current evoked by an action potential shaped voltage clamp protocol. The results of this study document that both erythromycin and clarithromycin significantly inhibit the HERG potassium current at clinically relevant concentrations.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0300-8177
1573-4919
DOI:10.1023/A:1027309703313