Digits Recognition for Arabic Handwritten through Convolutional Neural Networks, Local Binary Patterns, and Histogram of Oriented Gradients

التعرف على النص المكتوب بخط اليد هو موضوع دراسة له تطبيقات عديدة. أحد هذه التطبيقات هو تمييز الكتابة اليدوية في المستندات الرسمية، المخطوطات التاريخية، الشيكات المصرفية وما الى ذلك، وهي مشكلة يمكن اعتبارها بشكل نسبي مشكلة أمنية. كان لموضوع التعرف على خط اليد حيز كبير من الدراسة والتحليل في السنوات ا...

Full description

Saved in:
Bibliographic Details
Published inMajallat Baghdād lil-ʻulūm Vol. 21; no. 10; p. 3322
Main Authors Hasan, Bushra Mahdi, Jaber, Zahraa Jasim, Habeeb, Ahmad Adel
Format Journal Article
LanguageEnglish
Published University of Baghdad, College of Science for Women 01.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:التعرف على النص المكتوب بخط اليد هو موضوع دراسة له تطبيقات عديدة. أحد هذه التطبيقات هو تمييز الكتابة اليدوية في المستندات الرسمية، المخطوطات التاريخية، الشيكات المصرفية وما الى ذلك، وهي مشكلة يمكن اعتبارها بشكل نسبي مشكلة أمنية. كان لموضوع التعرف على خط اليد حيز كبير من الدراسة والتحليل في السنوات الأخيرة. يستخدم الأشخاص النص العربي في العديد من البلدان، بما في ذلك جميع البلدان التي تعتمد اللغة العربية كلغة أساسية بالإضافة إلى اللغات الفارسية والأردية والباشتو فإنها تستخدم الرموز العربية من حروف وارقام. ونظرًا للتنوع اللامتناهي في الكتابة اليدوية للأشخاص فان أنظمة التعرف عليها تواجه العديد من التحديات. تهدف هذه الورقة إلى فحص فعالية بعض التقنيات في معالجة مشكلة التعرف على الأرقام المكتوبة بخط اليد العربية (AHNR). على وجه التحديد الطرق قيد الدراسة هي الشبكات العصبية التلافيفية (CNNs)، والتي أثبتت فائدتها في مجالات متنوعة وتقدم حلولًا فعالة. النمط الثنائي المحلي (LBP) كتقنية لاستخراج الميزات وهو مشغل تركيبي فريد وفعال يجد تطبيقًا واسع النطاق في مجال أجهزة الكمبيوتر مثل التعرف على القياسات الحيوية واكتشاف الأهداف. وأيضا الرسم البياني للتدرجات الموجهة (HOG) كتقنية لاستخراج الميزات والتي تستخدم في رؤية الكمبيوتر ومعالجة الصور لغرض اكتشاف الأشياء حيث يركز واصف HOG على هيكل أو شكل كائن وهو أفضل من أي واصف حافة لأنه يستخدم المقدار وكذلك زاوية التدرج لحساب الميزات. علاوة على ذلك، سيتم استخدام خوارزمية K-Nearest Neighbor (KNN) كمصنف بالتزامن مع LBP وHOG. بمقارنة أداء الطرق الثلاثة حقق نموذج الشبكة العصبية التلافيفية (CNN) ما يقرب من 99 % من دقة التعرف، وهو مقارب لنهج HOG ولكن من حيث الفعالية الحسابية، كان نموذج CNN أسرع بمقدار o.61 ثانية من نهج HOG. The recognition of handwritten text is a topic of study that has several applications. One of these applications is the recognition of handwriting in official documents, historical scripts, bank checks, etc., which is a problem that might be considered relatively a security issue. The topic of handwriting recognition has been the subject of a significant amount of study and analysis in recent years. People from a variety of countries, including all of the countries that use Arabic as their primary language, as well as Persian, Urdu, and Pashto languages, also use Arabic characters in their scripts. As people's handwriting is infinitely varied, recognition systems confront numerous challenges. This paper aims to examine the efficacy of some techniques in addressing the problem of Arabic Handwritten Numbers Recognition (AHNR). Specifically, the methods under consideration are Convolutional Neural Networks (CNNs), which have demonstrated their utility in diverse domains and offer effective solutions.  Local Binary Pattern (LBP) is a unique, efficient textural operator that finds widespread application in the area of computers such as biometric identification and detection of targets as feature extraction techniques. In addition, a Histogram of Oriented Gradients (HOG) is a feature extraction technique that is used in computer vision and image processing for the purpose of object detection. The HOG descriptor focuses on the structure or the shape of an object. It is better than any edge descriptor as it uses magnitude as well as the angle of the gradient to compute the features. Furthermore, the K-Nearest Neighbor (KNN) algorithm will be employed as a classifier in conjunction with LBP and HOG. Comparing the performance of the three methods, the (CNN) model achieved nearly 99% recognition accuracy, which is asymptotic for the HOG approach. In terms of computational efficacy, the CNN model was 0.61 seconds faster than the HOG approach.
ISSN:2078-8665
2411-7986
DOI:10.21123/bsj.2024.9173